

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201-2

Deliverable 2.7

AV-ready macroscopic

modelling tool
Version: 5.0

Date: 2020-02-02

Author: Jörg Sonnleitner, Markus Friedrich

The sole responsibility for the content of this document lies with the authors. It does not

necessarily reflect the opinion of the European Union. Neither the EASME nor the European

Commission are responsible for any use that may be made of the information contained therein.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 2 of 81 h2020-coexist.eu

Document Control Page

Title AV-ready macroscopic modelling tool

Creator Jörg Sonnleitner

Editor Jörg Sonnleitner, Markus Friedrich

Brief Description Documentation about the AV-ready macroscopic modelling tool

Publisher

Contributors
Jörg Sonnleitner, Markus Friedrich, Maximilian Hartl, Johann Hartleb,

Emely Richter, Alexander Migl (University of Stuttgart)

Type (Deliverable/Milestone) Deliverable

Format Document related to script and dll files

Creation date 2018-10-08

Version number 5.0

Version date 2020-02-05

Last modified by Jörg Sonnleitner

Rights

Audience

 Internal

 Public

 Restricted, access granted to: EU Commission

Action requested

 To be revised by Partners involved in the preparation of the

Deliverable

 For approval of the WP Manager

 For approval of the Internal Reviewer (if required)

 For approval of the Project Co-ordinator

Deadline for approval 2018-10-31

Version Date Modified by Comments

5.0 2020-02-05 Jörg Sonnleitner Revision to include code for Visum 2020

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 3 of 81 h2020-coexist.eu

Table of contents

1 Introduction .. 4

1.1 Purpose of this document .. 4

1.2 Scope .. 4

1.3 Overview.. 4

2 Volume-Delay Functions ... 6

2.1 Relevance.. 6

2.2 Tool characteristics .. 6

3 Perception of automated travel time .. 7

3.1 Relevance.. 7

3.2 Tool characteristics .. 7

4 Ridematching ... 8

4.1 Relevance.. 8

4.2 Tool characteristics .. 8

5 Vehicle scheduling ... 9

5.1 Relevance.. 9

5.2 Tool characteristics .. 9

6 Appendix .. 10

6.1 Tool: Volume-Delay Functions ... 10

6.1.1 Script file: User-defined attributes ... 10

6.1.2 Script file: Formula matrices ... 12

6.1.3 Procedure sequence .. 13

6.1.4 Dynamic Link Libraries: User-defined volume-delay functions .. 16

6.2 Tool: Perception of automated travel time ... 40

6.2.1 Script file: User-defined attributes ... 40

6.2.2 Procedure sequence .. 42

6.2.3 Script file: Formula matrices ... 45

6.3 Tool: Ridematching .. 47

6.3.1 Script file: rs_match_all_to_all.vbs .. 47

6.3.2 Script file: rs_reduce_zone_sequence.vbs ... 47

6.3.3 Script file: rs_write_matrix_route_match.vbs... 48

6.4 Report on Milestone 16 “Assumptions for macroscopic modelling” 49

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 4 of 81 h2020-coexist.eu

1 Introduction

1.1 Purpose of this document

This document describes the tools developed by USTUTT within the CoEXist project. The purpose of these

tools is to enable macroscopic travel demand models implemented with the software Visum to incorporate

automated vehicles (AV) and new mobility services like ridesharing and to compute their impacts. The

methodology applied through the tools may be used to develop features for other macroscopic modelling

software as well. The modeller must take care on the proper usage and required adjustments of the

presented tools.

A detailed instruction on how to apply the tools, the approaches together with assumptions made and

further recommendations for the model user is included in the ‘Guide for the simulation of AV with

macroscopic modelling tool’ (D2.8).

1.2 Scope

The tools provide extensions to Visum by adding functionality to the software in form of Visum compatible

scripts, Visum procedure files or Visum Add-Ins. The tools provided are not integrated directly in Visum.

The model user has to plug them into Visum to make them work and to perform a certain task. They assist

the model developer or model user by extending the capabilities of Visum.

Every model is different and has specific characteristics. The development and testing of the tools was

mainly done using the Stuttgart Region travel demand model and partly for smaller, pilot models. Still, the

tools have been designed in such a way that they can be applied to all travel demand models implemented

in Visum, if certain inputs are available.

Apart from the automation of some tasks, the modeller still needs to adapt settings or adjust parts in Visum

that cannot be accessed in another way. Therefore, it is required that the model user is familiar with

working with Visum.

1.3 Overview

Traditional travel demand models apply the four-stage algorithm, where trip generation, destination choice,

mode choice and route choice are covered to replicate people’s behavior and their movement. Departure

time choice may also be considered as a step. Integrating automated vehicles or new mobility services

into these models requires to establish and include new steps in the procedure. This could be for example

the bundling of trips as well as the scheduling of vehicles for a ridesharing system with self-driving vehicles.

Besides adding new model stages, impacts of AV on supply and demand have to be taken into account

on all stages of a travel demand model.

Figure 1 shows the extended sequence of a travel demand model, which includes assumed impacts of

AV. Topics covered in this document are labelled with the corresponding chapters. Each main chapter

consists of a short introduction where the relevance of the specific topic is discussed along with a

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 5 of 81 h2020-coexist.eu

description of the related tool. The tools are included as code in the Appendix and are available for

download.

Figure 1: Modelling AV with macroscopic travel demand models

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 6 of 81 h2020-coexist.eu

2 Volume-Delay Functions

2.1 Relevance

Volume-delay functions determine the congested travel times of links and turns in macroscopic travel

demand models. The congested travel times depend on the free flow travel time and the level of saturation,

i.e. ratio of traffic volume to capacity. The higher this ratio, the larger the delay time. The relationship

between saturation and travel time is influenced by the type and the parameters of the volume-delay

function. Usually a model applies a set of volume-delay functions and assigns specific volume-delay

functions to every road or intersection type.

Incorporating AV into a travel demand model requires volume-delay functions considering the share of AV

and the characteristics of AV.

2.2 Tool characteristics

The tool for extending volume-delay functions to incorporate AV consists of four parts, which are described

in Table 1. The content of the corresponding files is provided in Chapter 6.1 as code.

Table 1: Overview on tools related to volume-delay functions with AV

Short description Input Output Implementation

create user-defined

attributes for handling

volume-delay functions

Visum travel demand

model

specific user-defined

attributes on network, link

and link type level

required for modelling AV

Visual Basic Script (VBS)

create formula matrices

for splitting the original

demand of car driver into

a demand for CV and AV

according to the AV share

Visum travel demand

model with an appropriate

set up regarding attributes

and names for transport

systems

formula demand matrices

on zone level for CV and

AV

Visual Basic Script (VBS)

procedure sequence for

setting the attributes used

by user-defined volume-

delay functions

an existing procedure

sequence in a Visum

travel demand model

added group of

procedures containing a

set of operations to enable

the model to handle the

user-defined volume-delay

functions

Extensible Markup

Language (XML)

user-defined volume-delay

function with constant or

variable PCU factors for

automated vehicles

Visum travel demand

model with an appropriate

set up regarding attributes

and names for transport

systems

specific user-defined

volume-delay functions

including a visual

representation for the

calculation rule (formula)

Dynamic Link Library

(DLL)

and

Windows Bitmap (BMP)

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 7 of 81 h2020-coexist.eu

3 Perception of automated travel time

3.1 Relevance

The way people perceive time during a trip depends on the type of activity they are engaged in: walking to

a vehicle, waiting time at a stop, driving time as a driver or as a passenger. To capture this perception in

a choice model, every time component is weighted with a specific factor to describe the perceived travel

time of a trip.

Automated vehicles that are able to drive automatically on certain road types or on AV-ready network

sections offer the possibility for the driver to spend some time of the trip on non-driving tasks. This share

of the trip time is henceforth referred to as ‘automated travel time’. Depending on the duration of the

automated travel time, people may experience and value the in-vehicle time differently. A one hour

automated drive with time for non-driving tasks will be perceived as a shorter time period. Consequently,

the attractiveness of private car transport will increase. This should be taken into consideration in a travel

demand model within destination, mode and route choice.

3.2 Tool characteristics

The toolbox for integrating the impacts of perceived automated travel time consists of three parts, which

are described in Table 2. The content of the corresponding files is provided in Chapter 6.2 as code.

Table 2: Overview on tools related to perceived travel time

Short description Input Output Implementation

create user-defined

attributes for handling a

different perception of

automated travel time

Visum travel demand

model

specific user-defined

attributes on network, link

type, link and matrix level

Visual Basic Script (VBS)

procedure sequence for

setting the values for

including perceived

automated travel time

an existing procedure

sequence in a Visum

travel demand model

added group of procedure

parameters to set the

needed attribute values for

handling automated travel

time with a different

perception

Extensible Markup

Language (XML)

create formula matrices

for extended skim

calculations and formula

demand matrices for CV

and AV

Visum travel demand

model with an appropriate

set up regarding attributes

and names for transport

systems

specific formula skim and

demand matrices on zone

level for calculations

related to perceived travel

time

Visual Basic Script (VBS)

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 8 of 81 h2020-coexist.eu

4 Ridematching

4.1 Relevance

State of the art travel demand models for urban areas typically distinguish four or five main modes: walking,

cycling, public transport and car. The mode car can be further split into car-driver and car-passenger. As

the importance of ridesharing may increase in the coming years, ridesharing should be addressed as an

additional sub or main mode in travel demand modelling. This requires an algorithm for matching the trips

of suppliers (today typically drivers of conventional vehicles, in the future mobility-as-a-service providers)

and demanders (travellers). Therefore a matching algorithm is necessary, which can be integrated in

existing travel demand models.

4.2 Tool characteristics

The tool for matching ridesharing trips comprises several script files that are not discussed in detail. Table

3 describes input and output. The content of the corresponding files is provided in Chapter 6.3 as code.

A demo version of an example is available for download on the following website hosted by the University

of Stuttgart: https://www.isv.uni-stuttgart.de/en/vuv/tools/index.html

Table 3: Summary of characteristics of the ridematching tool

Short description Input Output Implementation

Matching trips for

ridesharing

travel demand discretised

into time intervals, e.g.

96x15min

one matrix with matched

ridesharing trips for each

time interval

Visual Basic Scripts (VBS)

https://www.isv.uni-stuttgart.de/en/vuv/tools/index.html

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 9 of 81 h2020-coexist.eu

5 Vehicle scheduling

5.1 Relevance

As soon as automated vehicles are able to operate fully automated, there is no need for a driver anymore.

Mobility-as-a-service (MaaS) providers will benefit from this, because labour costs for transporting

passengers and relocating vehicles are reduced significantly. This will influence the operation of vehicles

and the vehicle traffic in the road network: fewer cars can transport more people, but empty vehicle trips

will increase traffic. Estimating the number of required cars and the amount of empty trips requires a model

extension which replicates the operation of MaaS. The model extension computes schedules for fleets of

MaaS vehicles by minimizing the fleet size and determining the required empty runs between drop-off and

pick-up locations. As result the model extension provides the required fleet size and the number of empty

vehicle trips for a predicted or given demand.

5.2 Tool characteristics

Table 4 describes the basic characteristics of the tool for vehicle scheduling. The development of the tool

is not completed and ready to be applied for any travel demand model, therefore the related code is not

provided in the appendix.

Table 4: Characteristics of the vehicle scheduling application

Short description Input Output Implementation

concatenates vehicle trips

according to initial user

settings

demand matrix for each

time interval containing

vehicle trips (carsharing or

ridesharing)

matrix with temporal

distance between zones

as time intervals

number of required

vehicles

vehicle trip matrix for

empty vehicle trips, one

matrix for each time

interval

Executable (EXE)

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 10 of 81 h2020-coexist.eu

6 Appendix

Disclaimer: This document has been updated to provide the tools for Visum 2020 users as well.

Therefore, the code for scripts, procedure parameters and volume-delay functions for Visum 2020 can

be found in the respective subchapters of 6.1 and 6.2.

6.1 Tool: Volume-Delay Functions

6.1.1 Script file: User-defined attributes

The submitted file “CoEXist_Create_User-Defined_Attributes_-_Extension_for_handling_AV_in_volume-

delay_functions.vbs” contains the following code:

Visum 18 or lower

'**

' This script creates user-defined attributes for different network elements in Visum

' CoEXist - WP2 Macroscopic Modelling Tool

' USTUTT - University of Stuttgart

' October 2018

'**

' One call for creating each user-defined attribute (UDA)

' AddUDA is defined below

Call Add_UDA("Links", "CX_AV-READY", "CX_AV-READY", 1, 0, 0, 1, 0, "", false)

Call Add_UDA("Linktypes", "CX_AV-READY", "CX_AV-READY", 1, 0, 0, 1, 0, "", false)

Call Add_UDA("Linktypes", "CX_F_PCU_AV_A", "CX_F_PCU_AV_A", 2, 2, 0, 3, 1, "", false)

Call Add_UDA("Linktypes", "CX_F_PCU_AV_B", "CX_F_PCU_AV_B", 2, 2, 0, 3, 1, "", false)

Call Add_UDA("Net", "CX_AV-SHARE", "CX_AV-SHARE", 1, 0, 0, 100, 0, "", false)

Call Add_UDA("Matrices", "CX_ID", "CX_ID", 5, 0, 0, 0, "", "", false)

' One call for adding a comment to each user-defined attribute

' SetUDAComment is defined below

Call Set_UDA_Comment("Links", "CX_AV-READY", "0: link is not AV-ready, 1: link is AV-ready")

Call Set_UDA_Comment("Linktypes", "CX_AV-READY", "0: link type is not AV-ready, 1: link type is AV-ready")

Call Set_UDA_Comment("Linktypes", "CX_F_PCU_AV_A", "PCU factor A for AV, which can be used stand-alone")

Call Set_UDA_Comment("Linktypes", "CX_F_PCU_AV_B", "PCU factor B for AV, which can be used additionally to factor A for a varying

resulting PCU factor depending on the AV share")

Call Set_UDA_Comment("Net", "CX_AV-SHARE", "Fixed AV share for splitting the demand as percentage")

Call Set_UDA_Comment("Matrices", "CX_ID", "CoEXist-unique identifier for working with formula matrices")

'**

' Commonly used ValueTypes:

' Member Value Summary

' ValueType_Int 1 Integer value (int)

' ValueType_Real 2 Real value (real)

' ValueType_String 5 String value (char*)

' ValueType_Duration 6 Duration (seconds or minutes depending on time format option)

' ValueType_TimePoint 7 Time stamp in seconds

' ValueType_Bool 9 Boolean value (true / false)

' ValueType_LongDuration 165 Precise duration (seconds or minutes depending on time format option)

'**

'**

' Definitions of subs and functions below

'**

' Creates a user-defined attribute as specified above

Sub Add_UDA(ObjId, UDA_Code, UDA_Name, ValueType, Decplaces, MinVal, MaxVal, DefVal, Formula, canBeEmpty)

 If UDA_Name= "" then UDA_Name=UDA_Code

 On Error Resume Next

 Set VisObjects = GetVisObj(ObjId)

 VisObjects.AddUserDefinedAttribute UDA_Code, UDA_Code, UDA_Name, ValueType, Decplaces, , MinVal, MaxVal, DefVal, , , Formula, canBeEmpty

End Sub

' Sets a comment for a user-defined attribute as specified above

Sub Set_UDA_Comment(ObjId, UDA_Code, UDA_Comment)

 Set VisObjects = GetVisObj(ObjId)

 For Each Obj In VisObjects.Attributes.GetAll

 If Obj.Code = UDA_Code Then

 Obj.Comment = UDA_Comment

 Exit For

 End If

 Next

End Sub

' Gets a pointer to a Visum object class

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 11 of 81 h2020-coexist.eu

Function GetVisObj(ObjID)

ObjID = LCase(ObjID)

 If ObjId = "net" Then

 Set VisObjects=Visum.Net

 ElseIf ObjId = "links" Then

 Set VisObjects=Visum.Net.Links

 ElseIf ObjId = "linktypes" Then

 Set VisObjects=Visum.Net.LinkTypes

 ElseIf ObjId = "matrices" Then

 Set VisObjects = Visum.Net.Matrices

 End If

Set GetVisObj=VisObjects

End Function

Visum 2020

'**

' This script creates user-defined attributes for different network elements in Visum

' CoEXist - WP2 Macroscopic Modelling Tool

' USTUTT - University of Stuttgart

' February 2020

'**

' One call for creating each user-defined attribute (UDA)

' AddUDA is defined below

Call Add_UDA("Links", "CX_AV-READY", "CX_AV-READY", 1, 0, 0, 1, 0, "", false)

Call Add_UDA("Links", "CX_F_PCU_AV_1", "CX_F_PCU_AV_1", 2, 2, 0, 3, 1, "", false)

Call Add_UDA("Links", "CX_F_PCU_AV_0", "CX_F_PCU_AV_0", 2, 2, 0, 3, 1, "", false)

Call Add_UDA("Net", "CX_AV-SHARE", "CX_AV-SHARE", 1, 0, 0, 100, 0, "", false)

Call Add_UDA("Matrices","CX_ID", "CX_ID", 5, 0, 0, 0, "", "", false)

' One call for adding a comment to each user-defined attribute

' SetUDAComment is defined below

Call Set_UDA_Comment("Links", "CX_AV-READY", "0: link is not AV-ready, 1: link is AV-ready")

Call Set_UDA_Comment("Links", "CX_F_PCU_AV_1", "PCU factor 1 for AV, which can be used stand-alone")

Call Set_UDA_Comment("Links", "CX_F_PCU_AV_0", "PCU factor 0 for AV, which can be used additionally to factor 1 for a varying resulting

PCU factor depending on the AV share")

Call Set_UDA_Comment("Net", "CX_AV-SHARE", "Fixed AV share for splitting the demand as percentage")

Call Set_UDA_Comment("Matrices","CX_ID", "CoEXist-unique identifier for working with formula matrices")

'**

' Commonly used ValueTypes:

' Member Value Summary

' ValueType_Int 1 Integer value (int)

' ValueType_Real 2 Real value (real)

' ValueType_String 5 String value (char*)

' ValueType_Duration 6 Duration (seconds or minutes depending on time format option)

' ValueType_TimePoint 7 Time stamp in seconds

' ValueType_Bool 9 Boolean value (true / false)

' ValueType_LongDuration 165 Precise duration (seconds or minutes depending on time format option)

'**

'**

' Definitions of subs and functions below

'**

' Creates a user-defined attribute as specified above

Sub Add_UDA(ObjId, UDA_Code, UDA_Name, ValueType, Decplaces, MinVal, MaxVal, DefVal, Formula, canBeEmpty)

 If UDA_Name= "" then UDA_Name=UDA_Code

 On Error Resume Next

 Set VisObjects = GetVisObj(ObjId)

 VisObjects.AddUserDefinedAttribute UDA_Code, UDA_Code, UDA_Name, ValueType, Decplaces, , MinVal, MaxVal, DefVal, , , Formula, ,

canBeEmpty

End Sub

' Sets a comment for a user-defined attribute as specified above

Sub Set_UDA_Comment(ObjId, UDA_Code, UDA_Comment)

 Set VisObjects = GetVisObj(ObjId)

 For Each Obj In VisObjects.Attributes.GetAll

 If Obj.Code = UDA_Code Then

 Obj.Comment = UDA_Comment

 Exit For

 End If

 Next

End Sub

' Gets a pointer to a Visum object class

Function GetVisObj(ObjID)

ObjID = LCase(ObjID)

 If ObjId = "net" Then

 Set VisObjects=Visum.Net

 ElseIf ObjId = "links" Then

 Set VisObjects=Visum.Net.Links

 ElseIf ObjId = "linktypes" Then

 Set VisObjects=Visum.Net.LinkTypes

 ElseIf ObjId = "matrices" Then

 Set VisObjects = Visum.Net.Matrices

 End If

Set GetVisObj=VisObjects

End Function

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 12 of 81 h2020-coexist.eu

6.1.2 Script file: Formula matrices

The submitted file “CoEXist_Create_Formula_Matrices_-_Extension_for_handling_AV_in_volume-

delay_functions.vbs” contains the following code:

Visum 18 or lower

'**

' This script creates formula matrices in Visum

' CoEXist - WP2 Macroscopic Modelling Tool

' USTUTT - University of Stuttgart

' October 2018

'**

' One call for creating each formula matrix

Call AddFormulaMat(-1, "CX_CV_DEMAND", "", 2, 3, "Matrix([CX_ID] = "+Chr(34)+"CX_CAR_DEMAND"+Chr(34)+")*(1-[CX_AV-

SHARE]/100)")

Call AddFormulaMat(-1, "CX_AV_DEMAND", "", 2, 3, "Matrix([CX_ID] = "+Chr(34)+"CX_CAR_DEMAND"+Chr(34)+")*[CX_AV-SHARE]/100")

'**

' Commonly used values for MatrixType and ObjectTypeRef

' Member Value Summary

' MATRIXTYPE_ANY 2 Any matrix type

' MATRIXTYPE_DEMAND 3 Demand matrix

' MATRIXTYPE_SKIM 4 Skim matrix

' OBJECTTYPEREF_ZONE 2 Zones

' OBJECTTYPEREF_MAINZONE 3 Main zones

' OBJECTTYPEREF_STOPAREA 4 Stop areas

'**

' Creates a formula matrix on zone level

Function AddFormulaMat(MatNo, Code, Name, ObjectTypeRef, Matrixtype, Formula)

 If Name="" Then Name=Code

 On Error Resume Next

 Set x = Visum.Net.AddMatrixWithFormula (MatNo, Formula, ObjectTypeRef, Matrixtype)

 x.attvalue("Code") = Code

 x.attvalue("Name") = Name

 x.attvalue("CX_ID") = Code

End Function

Visum 2020

'**

' This script creates formula matrices in Visum

' CoEXist - WP2 Macroscopic Modelling Tool

' USTUTT - University of Stuttgart

' February 2020

'**

' One call for creating each formula matrix

Call AddFormulaMat(-1, "CX_CV_DEMAND", "", 2, 3, "Matrix([CX_ID] = "+Chr(34)+"CX_CAR_DEMAND"+Chr(34)+")*(1-[CX_AV-SHARE]/100)")

Call AddFormulaMat(-1, "CX_AV_DEMAND", "", 2, 3, "Matrix([CX_ID] = "+Chr(34)+"CX_CAR_DEMAND"+Chr(34)+")*[CX_AV-SHARE]/100")

'**

' Commonly used values for MatrixType and ObjectTypeRef

' Member Value Summary

' MATRIXTYPE_ANY 2 Any matrix type

' MATRIXTYPE_DEMAND 3 Demand matrix

' MATRIXTYPE_SKIM 4 Skim matrix

' OBJECTTYPEREF_ZONE 2 Zones

' OBJECTTYPEREF_MAINZONE 3 Main zones

' OBJECTTYPEREF_STOPAREA 4 Stop areas

'**

' Creates a formula matrix on zone level

Function AddFormulaMat(MatNo, Code, Name, ObjectTypeRef, Matrixtype, Formula)

 If Name="" Then Name=Code

 On Error Resume Next

 Set x = Visum.Net.AddMatrixWithFormula (MatNo, Formula, ObjectTypeRef, Matrixtype)

 x.attvalue("Code") = Code

 x.attvalue("Name") = Name

 x.attvalue("CX_ID") = Code

End Function

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 13 of 81 h2020-coexist.eu

6.1.3 Procedure sequence

The submitted file “CoEXist_Procedure_Parameters_-_Extension_for_handling_AV_in_volume-

delay_functions.xml” extends an existing procedure sequence using the following code:

Visum 18 or lower

<?xml version = "1.0" encoding = "UTF-8"?>

<PROCEDURES VERSION = "1705">

 <OPERATIONS>

 <OPERATION

 NO = "1"

 CODE = ""

 OPERATIONTYPE = "Group"

 ACTIVE = "1"

 COMMENT = "Set AV-related attributes regarding capacity/performance"

 EXECUTED = "0"

 STARTTIME = ""

 ENDTIME = ""

 DURATION = ""

 MESSAGES = ""

 RESULTMESSAGE = ""

 SUCCESS = "0"

 COMPUTENODE = ""

 WARNINGCOUNT = ""

 ERRORCOUNT = ""

 INFORMATIONCOUNT = "">

 <GROUPPARA ISEXPANDED = "1" />

 </OPERATION>

 <OPERATION

 NO = "2"

 CODE = ""

 OPERATIONTYPE = "EditAttribute"

 ACTIVE = "1"

 COMMENT = "User input: AV share [percentage]"

 EXECUTED = "0"

 STARTTIME = ""

 ENDTIME = ""

 DURATION = ""

 MESSAGES = ""

 RESULTMESSAGE = ""

 SUCCESS = "0"

 COMPUTENODE = ""

 WARNINGCOUNT = ""

 ERRORCOUNT = ""

 INFORMATIONCOUNT = "">

 <ATTRIBUTEFORMULAPARA

 NETOBJECTTYPE = "NETWORK"

 INCLUDESUBCATEGORIES = "0"

 RESULTATTRNAME = "CX_AV-SHARE"

 ONLYACTIVE = "0"

 FORMULA = "50"

 />

 </OPERATION>

 <OPERATION

 NO = "3"

 CODE = ""

 OPERATIONTYPE = "EditAttribute"

 ACTIVE = "1"

 COMMENT = "Transfer AV-readiness [0/1] from link type level to uval1"

 EXECUTED = "0"

 STARTTIME = ""

 ENDTIME = ""

 DURATION = ""

 MESSAGES = ""

 RESULTMESSAGE = ""

 SUCCESS = "0"

 COMPUTENODE = ""

 WARNINGCOUNT = ""

 ERRORCOUNT = ""

 INFORMATIONCOUNT = "">

 <ATTRIBUTEFORMULAPARA

 NETOBJECTTYPE = "LINK"

 INCLUDESUBCATEGORIES = "0"

 RESULTATTRNAME = "ADDVAL1"

 ONLYACTIVE = "0"

 FORMULA = "[LINKTYPE\CX_AV-READY]"

 />

 </OPERATION>

 <OPERATION

 NO = "4"

 CODE = ""

 OPERATIONTYPE = "EditAttribute"

 ACTIVE = "0"

 COMMENT = "Transfer AV-readiness [0/1] from link level to uval1"

 EXECUTED = "0"

 STARTTIME = ""

 ENDTIME = ""

 DURATION = ""

 MESSAGES = ""

 RESULTMESSAGE = ""

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 14 of 81 h2020-coexist.eu

 SUCCESS = "0"

 COMPUTENODE = ""

 WARNINGCOUNT = ""

 ERRORCOUNT = ""

 INFORMATIONCOUNT = "">

 <ATTRIBUTEFORMULAPARA

 NETOBJECTTYPE = "LINK"

 INCLUDESUBCATEGORIES = "0"

 RESULTATTRNAME = "ADDVAL1"

 ONLYACTIVE = "0"

 FORMULA = "[CX_AV-READY]"

 />

 </OPERATION>

 <OPERATION

 NO = "5"

 CODE = ""

 OPERATIONTYPE = "EditAttribute"

 ACTIVE = "1"

 COMMENT = "Transfer PCU-factor A for AV from link type level to uval2"

 EXECUTED = "0"

 STARTTIME = ""

 ENDTIME = ""

 DURATION = ""

 MESSAGES = ""

 RESULTMESSAGE = ""

 SUCCESS = "0"

 COMPUTENODE = ""

 WARNINGCOUNT = ""

 ERRORCOUNT = ""

 INFORMATIONCOUNT = "">

 <ATTRIBUTEFORMULAPARA

 NETOBJECTTYPE = "LINK"

 INCLUDESUBCATEGORIES = "0"

 RESULTATTRNAME = "ADDVAL2"

 ONLYACTIVE = "0"

 FORMULA = "100*[LINKTYPE\CX_F_PCU_AV_A]"

 />

 </OPERATION>

 <OPERATION

 NO = "6"

 CODE = ""

 OPERATIONTYPE = "EditAttribute"

 ACTIVE = "0"

 COMMENT = "Transfer PCU-factor B for AV from link type level to uval3"

 EXECUTED = "0"

 STARTTIME = ""

 ENDTIME = ""

 DURATION = ""

 MESSAGES = ""

 RESULTMESSAGE = ""

 SUCCESS = "0"

 COMPUTENODE = ""

 WARNINGCOUNT = ""

 ERRORCOUNT = ""

 INFORMATIONCOUNT = "">

 <ATTRIBUTEFORMULAPARA

 NETOBJECTTYPE = "LINK"

 INCLUDESUBCATEGORIES = "0"

 RESULTATTRNAME = "ADDVAL3"

 ONLYACTIVE = "0"

 FORMULA = "100*[LINKTYPE\CX_F_PCU_AV_B]"

 />

 </OPERATION>

 </OPERATIONS>

</PROCEDURES>

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 15 of 81 h2020-coexist.eu

Visum 2020

<?xml version = "1.0" encoding = "UTF-8"?>

<PROCEDURES VERSION = "1902">

 <OPERATIONS>

 <OPERATION

 NO = "1"

 CODE = ""

 OPERATIONTYPE = "Group"

 ACTIVE = "1"

 COMMENT = "Set AV-related attributes regarding capacity/performance"

 EXECUTED = "0"

 STARTTIME = ""

 ENDTIME = ""

 DURATION = ""

 MESSAGES = ""

 RESULTMESSAGE = ""

 SUCCESS = "0"

 COMPUTENODES = ""

 WARNINGCOUNT = ""

 ERRORCOUNT = ""

 INFORMATIONCOUNT = ""

 OPERATIONVARIABLECOUNT = "">

 <GROUPPARA ISEXPANDED = "1" />

 </OPERATION>

 <OPERATION

 NO = "2"

 CODE = ""

 OPERATIONTYPE = "EditAttribute"

 ACTIVE = "1"

 COMMENT = "User input: AV share [percentage: 50 = 50%]"

 EXECUTED = "0"

 STARTTIME = ""

 ENDTIME = ""

 DURATION = ""

 MESSAGES = ""

 RESULTMESSAGE = ""

 SUCCESS = "0"

 COMPUTENODES = ""

 WARNINGCOUNT = ""

 ERRORCOUNT = ""

 INFORMATIONCOUNT = ""

 OPERATIONVARIABLECOUNT = "">

 <ATTRIBUTEFORMULAPARA

 NETOBJECTTYPE = "NETWORK"

 INCLUDESUBCATEGORIES = "0"

 RESULTATTRNAME = "CX_AV-SHARE"

 ONLYACTIVE = "0"

 FORMULA = "50"

 />

 </OPERATION>

 </OPERATIONS>

</PROCEDURES>

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 16 of 81 h2020-coexist.eu

6.1.4 Dynamic Link Libraries: User-defined volume-delay functions

The DLL files are the result of compiled CPP files. Those contain the code provided on the following

pages.

Visum 18 or lower

VisumVDF_CX_AV_PCU_CONST_BPR_x64.dll

// #include "..."
// => file needs to be in the project's directory
#include "UserDefinedVDF.h"

// #include <...>
// => file is searched in the project's environment folder
#include <tchar.h>
#include <math.h>

// VDF_Name appears as an entry in the dropdown list of volume-delay function types
wchar_t VDFName[] = _T("CX_AV_PCU_CONST_BPR");

// VDFID is the internal name in the version file
char VDFID[] = "CX_AV_PCU_CONST_BPR";

// indexes of the respective TSys
int ind_P;
int ind_CX_AV;
int ind_LkwS_BV;
int ind_LkwS_DV;
int ind_LkwS_RV;
int ind_Lkw_BV;
int ind_Lkw_DV;
int ind_Lkw_RV;

int INTERFACE_VERSION = 1;

#ifndef TRUE
#define TRUE 1
#endif

#ifndef FALSE
#define FALSE 0
#endif

char Init()
{
 // make sure that no indexes can be incorrectly assigned
 ind_P = -1;
 ind_CX_AV = -1;
 ind_LkwS_BV = -1;
 ind_LkwS_DV = -1;
 ind_LkwS_RV = -1;
 ind_Lkw_BV = -1;
 ind_Lkw_DV = -1;
 ind_Lkw_RV = -1;

 return TRUE;
}

void Destroy()
{
}

char IsThreadSafe()
{
 // TRUE = function may be called multiple times in parallel
 // good for multithreaded assignment procedures
 return TRUE;
}

char DependsOnTSys()
{
 // TRUE = vehicle volumes by TSys may be used in Calc-Function
 return TRUE;
}

const wchar_t* GetName(const char *langid)
{
 // setting VDF_Name as the name for this volume-delay function type
 return VDFName;
}

const char* GetID()
{
 return VDFID;
}

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 17 of 81 h2020-coexist.eu

int GetInterfaceVersion()
{
 return INTERFACE_VERSION;
}

void SetTsysInfo(int numtsys, const wchar_t * tsysids[])
{
 // assign TSys Code to the related index within the TSys array
 // will be done once at the beginning of an assignment by Visum
 int i;
 // go through all the positions in the array
 for (i = 0; i < numtsys; i++)
 {
 // wcscmp executes string comparison
 // if return value == 0, strings are identical
 if (wcscmp(tsysids[i], _T("P")) == 0) {
 ind_P = i;
 continue; // exit for-loop and begin with next iteration
 }
 if (wcscmp(tsysids[i], _T("CX_AV")) == 0) {
 ind_CX_AV = i;
 continue;
 }
 if (wcscmp(tsysids[i], _T("LkwS_BV")) == 0) {
 ind_LkwS_BV = i;
 continue;
 }
 if (wcscmp(tsysids[i], _T("LkwS_DV")) == 0) {
 ind_LkwS_DV = i;
 continue;
 }
 if (wcscmp(tsysids[i], _T("LkwS_RV")) == 0) {
 ind_LkwS_RV = i;
 continue;
 }
 if (wcscmp(tsysids[i], _T("Lkw_BV")) == 0) {
 ind_Lkw_BV = i;
 continue;
 }
 if (wcscmp(tsysids[i], _T("Lkw_DV")) == 0) {
 ind_Lkw_DV = i;
 continue;
 }
 if (wcscmp(tsysids[i], _T("Lkw_RV")) == 0)
 ind_Lkw_RV = i;
 }
}

// specify calculation rule below
// transferred parameters must remain the same even if they are not used
double Calc(int tsysind, char tsysisopen,
 int typ, int numlanes, double length, double cap, double v0, double t0, double gradient,
 double pcuvol, double basevol, double vehvolsys[],
 int uval1, int uval2, int uval3, int uvaltsys,
 double para_a, double para_b, double para_c, double para_d, double para_f, double para_a2, double para_b2, double para_d2, double para_f2,
double satcrit)
{
 // declaration
 double truck_vol;
 double pcu_factor;
 double userdef_pcuvol;
 // sat = saturation is not assigend by default
 double sat;

 // captures negative or zero values of capacity and returns huge TTC
 if (cap <= 0 || para_c <= 0)
 return 1E10;

 // add up all truck volumes
 truck_vol = vehvolsys[ind_LkwS_BV] + vehvolsys[ind_LkwS_DV] + vehvolsys[ind_LkwS_RV] + vehvolsys[ind_Lkw_BV] + vehvolsys[ind_Lkw_DV] +
vehvolsys[ind_Lkw_RV];

 // if there are no vehicles on the link, TTC corresponds to T0
 // this is important for the skim matrix calculation of walking
 if (truck_vol + vehvolsys[ind_CX_AV] + vehvolsys[ind_P] == 0)
 return t0;

 // traffic volume in passenger car units
 // considers CX_AV-READY property through AddVal1=uval1 and PCU factor through AddVal2=uval2
 userdef_pcuvol = truck_vol*2.0 + vehvolsys[ind_P]*1.0 + vehvolsys[ind_CX_AV]*(1 - uval1) + vehvolsys[ind_CX_AV]*uval1*(uval2 / 100.0);

 // calculate saturation, para_c is factor for full-day capacity and is set in Visum
 sat = (userdef_pcuvol) / (cap * para_c);

 // return TTC (standard function as BPR)
 return t0 * (1 + para_a * (pow(sat, para_b)));
}

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 18 of 81 h2020-coexist.eu

Figure 2 shows the preview picture “VisumVDF_CX_AV_PCU_CONST_BPR_x64.bmp”, which is

displayed in Visum, if the user selects the related volume-delay function.

Figure 2: Preview picture with calculation rule

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 19 of 81 h2020-coexist.eu

VisumVDF_CX_AV_PCU_CONST_LOHSE_x64.dll

// #include "..."
// => file needs to be in the project's directory
#include "UserDefinedVDF.h"

// #include <...>
// => file is searched in the project's environment folder
#include <tchar.h>
#include <math.h>

// VDF_Name appears as an entry in the dropdown list of volume-delay function types
wchar_t VDFName[] = _T("CX_AV_PCU_CONST_LOHSE");

// VDFID is the internal name in the version file
char VDFID[] = "CX_AV_PCU_CONST_LOHSE";

// indexes of the respective TSys
int ind_P;
int ind_CX_AV;
int ind_LkwS_BV;
int ind_LkwS_DV;
int ind_LkwS_RV;
int ind_Lkw_BV;
int ind_Lkw_DV;
int ind_Lkw_RV;

int INTERFACE_VERSION = 1;

#ifndef TRUE
#define TRUE 1
#endif

#ifndef FALSE
#define FALSE 0
#endif

char Init()
{
 // make sure that no indexes can be incorrectly assigned
 ind_P = -1;
 ind_CX_AV = -1;
 ind_LkwS_BV = -1;
 ind_LkwS_DV = -1;
 ind_LkwS_RV = -1;
 ind_Lkw_BV = -1;
 ind_Lkw_DV = -1;
 ind_Lkw_RV = -1;

 return TRUE;
}

void Destroy()
{
}

char IsThreadSafe()
{
 // TRUE = function may be called multiple times in parallel
 // good for multithreaded assignment procedures
 return TRUE;
}

char DependsOnTSys()
{
 // TRUE = vehicle volumes by TSys may be used in Calc-Function
 return TRUE;
}

const wchar_t* GetName(const char *langid)
{
 // setting VDF_Name as the name for this volume-delay function type
 return VDFName;
}

const char* GetID()
{
 return VDFID;
}

int GetInterfaceVersion()
{
 return INTERFACE_VERSION;
}

void SetTsysInfo(int numtsys, const wchar_t * tsysids[])
{
 // assign TSys Code to the related index within the TSys array
 // will be done once at the beginning of an assignment by Visum
 int i;
 // go through all the positions in the array
 for (i = 0; i < numtsys; i++)

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 20 of 81 h2020-coexist.eu

 {
 // wcscmp executes string comparison
 // if return value == 0, strings are identical
 if (wcscmp(tsysids[i], _T("P")) == 0) {
 ind_P = i;
 continue; // exit for-loop and begin with next iteration
 }
 if (wcscmp(tsysids[i], _T("CX_AV")) == 0) {
 ind_CX_AV = i;
 continue;
 }
 if (wcscmp(tsysids[i], _T("LkwS_BV")) == 0) {
 ind_LkwS_BV = i;
 continue;
 }
 if (wcscmp(tsysids[i], _T("LkwS_DV")) == 0) {
 ind_LkwS_DV = i;
 continue;
 }
 if (wcscmp(tsysids[i], _T("LkwS_RV")) == 0) {
 ind_LkwS_RV = i;
 continue;
 }
 if (wcscmp(tsysids[i], _T("Lkw_BV")) == 0) {
 ind_Lkw_BV = i;
 continue;
 }
 if (wcscmp(tsysids[i], _T("Lkw_DV")) == 0) {
 ind_Lkw_DV = i;
 continue;
 }
 if (wcscmp(tsysids[i], _T("Lkw_RV")) == 0)
 ind_Lkw_RV = i;
 }
}

// specify calculation rule below
// transferred parameters must remain the same even if they are not used
double Calc(int tsysind, char tsysisopen,
 int typ, int numlanes, double length, double cap, double v0, double t0, double gradient,
 double pcuvol, double basevol, double vehvolsys[],
 int uval1, int uval2, int uval3, int uvaltsys,
 double para_a, double para_b, double para_c, double para_d, double para_f, double para_a2, double para_b2, double para_d2, double para_f2,
double satcrit)
{
 // declaration
 double truck_vol;
 double pcu_factor;
 double userdef_pcuvol;
 // sat = saturation is not assigend by default
 double sat;

 // captures negative or zero values of capacity and returns huge TTC
 if (cap <= 0 || para_c <= 0)
 return 1E10;

 // add up all truck volumes
 truck_vol = vehvolsys[ind_LkwS_BV] + vehvolsys[ind_LkwS_DV] + vehvolsys[ind_LkwS_RV] + vehvolsys[ind_Lkw_BV] + vehvolsys[ind_Lkw_DV] +
vehvolsys[ind_Lkw_RV];

 // if there are no vehicles on the link, TTC corresponds to T0
 // this is important for the skim matrix calculation of walking
 if (truck_vol + vehvolsys[ind_CX_AV] + vehvolsys[ind_P] == 0)
 return t0;

 // traffic volume in passenger car units
 // considers CX_AV-READY property through AddVal1=uval1 and PCU factor through AddVal2=uval2
 userdef_pcuvol = truck_vol * 2.0 + vehvolsys[ind_P] * 1.0 + vehvolsys[ind_CX_AV] * (1 - uval1) + vehvolsys[ind_CX_AV] * uval1*(uval2 / 100.0);

 // calculate saturation, para_c is factor for full-day capacity and is set in Visum
 sat = (userdef_pcuvol) / (cap * para_c);

 // return TTC (standard function as LOHSE)
 if (sat <= satcrit)
 return t0 * (1 + para_a * (pow(sat, para_b)));
 else // sat > satcrit
 return t0 * (1 + para_a * (pow(satcrit, para_b))) + para_a * para_b * t0 * (sat - satcrit) * (pow(satcrit, para_b - 1));
}

Figure 3 shows the preview picture “VisumVDF_CX_AV_PCU_CONST_LOHSE_x64.bmp”, which is

displayed in Visum, if the user selects the related volume-delay function.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 21 of 81 h2020-coexist.eu

Figure 3: Preview picture with calculation rule

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 22 of 81 h2020-coexist.eu

VisumVDF_CX_AV_PCU_VAR_BPR_x64.dll

// #include "..."
// => file needs to be in the project's directory
#include "UserDefinedVDF.h"

// #include <...>
// => file is searched in the project's environment folder
#include <tchar.h>
#include <math.h>

// VDF_Name appears as an entry in the dropdown list of volume-delay function types
wchar_t VDFName[] = _T("CX_AV_PCU_VAR_BPR");

// VDFID is the internal name in the version file
char VDFID[] = "CX_AV_PCU_VAR_BPR";

// indexes of the respective TSys
int ind_P;
int ind_CX_AV;
int ind_LkwS_BV;
int ind_LkwS_DV;
int ind_LkwS_RV;
int ind_Lkw_BV;
int ind_Lkw_DV;
int ind_Lkw_RV;

int INTERFACE_VERSION = 1;

#ifndef TRUE
#define TRUE 1
#endif

#ifndef FALSE
#define FALSE 0
#endif

char Init()
{
 // make sure that no indexes can be incorrectly assigned
 ind_P = -1;
 ind_CX_AV = -1;
 ind_LkwS_BV = -1;
 ind_LkwS_DV = -1;
 ind_LkwS_RV = -1;
 ind_Lkw_BV = -1;
 ind_Lkw_DV = -1;
 ind_Lkw_RV = -1;

 return TRUE;
}

void Destroy()
{
}

char IsThreadSafe()
{
 // TRUE = function may be called multiple times in parallel
 // good for multithreaded assignment procedures
 return TRUE;
}

char DependsOnTSys()
{
 // TRUE = vehicle volumes by TSys may be used in Calc-Function
 return TRUE;
}

const wchar_t* GetName(const char *langid)
{
 // setting VDF_Name as the name for this volume-delay function type
 return VDFName;
}

const char* GetID()
{
 return VDFID;
}

int GetInterfaceVersion()
{
 return INTERFACE_VERSION;
}

void SetTsysInfo(int numtsys, const wchar_t * tsysids[])
{
 // assign TSys Code to the related index within the TSys array
 // will be done once at the beginning of an assignment by Visum
 int i;
 // go through all the positions in the array
 for (i = 0; i < numtsys; i++)

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 23 of 81 h2020-coexist.eu

 {
 // wcscmp executes string comparison
 // if return value == 0, strings are identical
 if (wcscmp(tsysids[i], _T("P")) == 0) {
 ind_P = i;
 continue; // exit for-loop and begin with next iteration
 }
 if (wcscmp(tsysids[i], _T("CX_AV")) == 0) {
 ind_CX_AV = i;
 continue;
 }
 if (wcscmp(tsysids[i], _T("LkwS_BV")) == 0) {
 ind_LkwS_BV = i;
 continue;
 }
 if (wcscmp(tsysids[i], _T("LkwS_DV")) == 0) {
 ind_LkwS_DV = i;
 continue;
 }
 if (wcscmp(tsysids[i], _T("LkwS_RV")) == 0) {
 ind_LkwS_RV = i;
 continue;
 }
 if (wcscmp(tsysids[i], _T("Lkw_BV")) == 0) {
 ind_Lkw_BV = i;
 continue;
 }
 if (wcscmp(tsysids[i], _T("Lkw_DV")) == 0) {
 ind_Lkw_DV = i;
 continue;
 }
 if (wcscmp(tsysids[i], _T("Lkw_RV")) == 0)
 ind_Lkw_RV = i;
 }
}

// specify calculation rule below
// transferred parameters must remain the same even if they are not used
double Calc(int tsysind, char tsysisopen,
 int typ, int numlanes, double length, double cap, double v0, double t0, double gradient,
 double pcuvol, double basevol, double vehvolsys[],
 int uval1, int uval2, int uval3, int uvaltsys,
 double para_a, double para_b, double para_c, double para_d, double para_f, double para_a2, double para_b2, double para_d2, double para_f2,
double satcrit)
{
 // declaration
 double truck_vol;
 double pcu_factor;
 double userdef_pcuvol;
 // sat = saturation is not assigend by default
 double sat;

 // captures negative or zero values of capacity and returns huge TTC
 if (cap <= 0 || para_c <= 0)
 return 1E10;

 // add up all truck volumes
 truck_vol = vehvolsys[ind_LkwS_BV] + vehvolsys[ind_LkwS_DV] + vehvolsys[ind_LkwS_RV] + vehvolsys[ind_Lkw_BV] + vehvolsys[ind_Lkw_DV] +
vehvolsys[ind_Lkw_RV];

 // if there are no vehicles on the link, TTC corresponds to T0
 // this is important for the skim matrix calculation of walking
 if (truck_vol + vehvolsys[ind_CX_AV] + vehvolsys[ind_P] == 0)
 return t0;

 // calculate pcu factor dependend on AV share, for each link individually
 // the AV share on a link does not correspond to the global AV share
 // please note, that uvals are integer values, so division by 100 is necessary
 pcu_factor = (uval3 - (vehvolsys[ind_CX_AV] / (truck_vol + vehvolsys[ind_CX_AV] + vehvolsys[ind_P]))*(uval3 - uval2)) / 100.0;

 // traffic volume in passenger car units
 // considers CX_AV-READY property through AddVal1=uval1 and PCU factor through AddVal2=uval2
 userdef_pcuvol = truck_vol * 2.0 + vehvolsys[ind_P] * 1.0 + vehvolsys[ind_CX_AV] * (1 - uval1) + vehvolsys[ind_CX_AV] * uval1*pcu_factor;

 // calculate saturation, para_c is factor for full-day capacity and is set in Visum
 sat = (userdef_pcuvol) / (cap * para_c);

 // return TTC (standard function as BPR)
 return t0 * (1 + para_a * (pow(sat, para_b)));
}

Figure 4 shows the preview picture “VisumVDF_CX_AV_PCU_VAR_BPR_x64.bmp”, which is displayed

in Visum, if the user selects the related volume-delay function.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 24 of 81 h2020-coexist.eu

Figure 4: Preview picture with calculation rule

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 25 of 81 h2020-coexist.eu

VisumVDF_CX_AV_PCU_VAR_LOHSE_x64.dll

// #include "..."
// => file needs to be in the project's directory
#include "UserDefinedVDF.h"

// #include <...>
// => file is searched in the project's environment folder
#include <tchar.h>
#include <math.h>

// VDF_Name appears as an entry in the dropdown list of volume-delay function types
wchar_t VDFName[] = _T("CX_AV_PCU_VAR_LOHSE");

// VDFID is the internal name in the version file
char VDFID[] = "CX_AV_PCU_VAR_LOHSE";

// indexes of the respective TSys
int ind_P;
int ind_CX_AV;
int ind_LkwS_BV;
int ind_LkwS_DV;
int ind_LkwS_RV;
int ind_Lkw_BV;
int ind_Lkw_DV;
int ind_Lkw_RV;

int INTERFACE_VERSION = 1;

#ifndef TRUE
#define TRUE 1
#endif

#ifndef FALSE
#define FALSE 0
#endif

char Init()
{
 // make sure that no indexes can be incorrectly assigned
 ind_P = -1;
 ind_CX_AV = -1;
 ind_LkwS_BV = -1;
 ind_LkwS_DV = -1;
 ind_LkwS_RV = -1;
 ind_Lkw_BV = -1;
 ind_Lkw_DV = -1;
 ind_Lkw_RV = -1;

 return TRUE;
}

void Destroy()
{
}

char IsThreadSafe()
{
 // TRUE = function may be called multiple times in parallel
 // good for multithreaded assignment procedures
 return TRUE;
}

char DependsOnTSys()
{
 // TRUE = vehicle volumes by TSys may be used in Calc-Function
 return TRUE;
}

const wchar_t* GetName(const char *langid)
{
 // setting VDF_Name as the name for this volume-delay function type
 return VDFName;
}

const char* GetID()
{
 return VDFID;
}

int GetInterfaceVersion()
{
 return INTERFACE_VERSION;
}

void SetTsysInfo(int numtsys, const wchar_t * tsysids[])
{
 // assign TSys Code to the related index within the TSys array
 // will be done once at the beginning of an assignment by Visum
 int i;
 // go through all the positions in the array
 for (i = 0; i < numtsys; i++)

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 26 of 81 h2020-coexist.eu

 {
 // wcscmp executes string comparison
 // if return value == 0, strings are identical
 if (wcscmp(tsysids[i], _T("P")) == 0) {
 ind_P = i;
 continue; // exit for-loop and begin with next iteration
 }
 if (wcscmp(tsysids[i], _T("CX_AV")) == 0) {
 ind_CX_AV = i;
 continue;
 }
 if (wcscmp(tsysids[i], _T("LkwS_BV")) == 0) {
 ind_LkwS_BV = i;
 continue;
 }
 if (wcscmp(tsysids[i], _T("LkwS_DV")) == 0) {
 ind_LkwS_DV = i;
 continue;
 }
 if (wcscmp(tsysids[i], _T("LkwS_RV")) == 0) {
 ind_LkwS_RV = i;
 continue;
 }
 if (wcscmp(tsysids[i], _T("Lkw_BV")) == 0) {
 ind_Lkw_BV = i;
 continue;
 }
 if (wcscmp(tsysids[i], _T("Lkw_DV")) == 0) {
 ind_Lkw_DV = i;
 continue;
 }
 if (wcscmp(tsysids[i], _T("Lkw_RV")) == 0)
 ind_Lkw_RV = i;
 }
}

// specify calculation rule below
// transferred parameters must remain the same even if they are not used
double Calc(int tsysind, char tsysisopen,
 int typ, int numlanes, double length, double cap, double v0, double t0, double gradient,
 double pcuvol, double basevol, double vehvolsys[],
 int uval1, int uval2, int uval3, int uvaltsys,
 double para_a, double para_b, double para_c, double para_d, double para_f, double para_a2, double para_b2, double para_d2, double para_f2,
double satcrit)
{
 // declaration
 double truck_vol;
 double pcu_factor;
 double userdef_pcuvol;
 // sat = saturation is not assigend by default
 double sat;

 // captures negative or zero values of capacity and returns huge TTC
 if (cap <= 0 || para_c <= 0)
 return 1E10;

 // add up all truck volumes
 truck_vol = vehvolsys[ind_LkwS_BV] + vehvolsys[ind_LkwS_DV] + vehvolsys[ind_LkwS_RV] + vehvolsys[ind_Lkw_BV] + vehvolsys[ind_Lkw_DV] +
vehvolsys[ind_Lkw_RV];

 // if there are no vehicles on the link, TTC corresponds to T0
 // this is important for the skim matrix calculation of walking
 if (truck_vol + vehvolsys[ind_CX_AV] + vehvolsys[ind_P] == 0)
 return t0;

 // calculate pcu factor dependend on AV share, for each link individually
 // the AV share on a link does not correspond to the global AV share
 // please note, that uvals are integer values, so division by 100 is necessary
 pcu_factor = (uval3 - (vehvolsys[ind_CX_AV] / (truck_vol + vehvolsys[ind_CX_AV] + vehvolsys[ind_P]))*(uval3 - uval2))/100.0;

 // traffic volume in passenger car units
 // considers CX_AV-READY property through AddVal1=uval1 and PCU factor through AddVal2=uval2
 userdef_pcuvol = truck_vol * 2.0 + vehvolsys[ind_P] * 1.0 + vehvolsys[ind_CX_AV] * (1 - uval1) + vehvolsys[ind_CX_AV]*uval1*pcu_factor;

 // calculate saturation, para_c is factor for full-day capacity and is set in Visum
 sat = (userdef_pcuvol) / (cap * para_c);

 // return TTC (standard function as LOHSE)
 if (sat <= satcrit)
 return t0 * (1 + para_a * (pow(sat, para_b)));
 else // sat > satcrit
 return t0 * (1 + para_a * (pow(satcrit, para_b))) + para_a * para_b * t0 * (sat - satcrit) * (pow(satcrit, para_b - 1));
}

Figure 5 shows the preview picture “VisumVDF_CX_AV_PCU_VAR_LOHSE_x64.bmp”, which is

displayed in Visum, if the user selects the related volume-delay function.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 27 of 81 h2020-coexist.eu

Figure 5: Preview picture with calculation rule

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 28 of 81 h2020-coexist.eu

Visum 2020

VisumVDF_CX_AV_PCU_CONST_BPR_2020_x64.dll

#include "UserDefinedVDF_2020.h"

#include "tchar.h"

#include <math.h>

#include <float.h>

#include "string.h"

// VDF_Name appears as an entry in the dropdown list of volume-delay function types

wchar_t VDFName[] = _T("CX_AV_PCU_CONST_BPR_2020");

// VDFID is the internal name in the version file

char VDFID[] = "CX_AV_PCU_CONST_BPR_2020";

int INTERFACE_VERSION = 1;

#ifndef TRUE

#define TRUE 1

#endif

#ifndef FALSE

#define FALSE 0

#endif

char Init()

{

 return TRUE;

}

enum AttributeIndices

{

 CX_AV_READY,

 PCU_AV,

 PCU_TSYS_P,

 PCU_TSYS_CX_AV,

 PCU_TSYS_LkwS_BV,

 PCU_TSYS_LkwS_DV,

 PCU_TSYS_LkwS_RV,

 PCU_TSYS_Lkw_BV,

 PCU_TSYS_Lkw_DV,

 PCU_TSYS_Lkw_RV,

 LastId

};

static const int MyMaxIDLength = 100; // Character limit for Strings

static wchar_t staticAttributeIDs[LastId][MyMaxIDLength] =

{

 // Strings of attributeIDs from links below must correspond to the order of AttributeIndices

 L"CX_AV-READY",

 L"CX_F_PCU_AV",

 L"NETWORK\\EXACTLYONE:TSYSS([CODE]=\"P\")\\PCU", // please note: \\ = \ and \" = "

 L"NETWORK\\EXACTLYONE:TSYSS([CODE]=\"CX_AV\")\\PCU",

 L"NETWORK\\EXACTLYONE:TSYSS([CODE]=\"LkwS_BV\")\\PCU",

 L"NETWORK\\EXACTLYONE:TSYSS([CODE]=\"LkwS_DV\")\\PCU",

 L"NETWORK\\EXACTLYONE:TSYSS([CODE]=\"LkwS_RV\")\\PCU",

 L"NETWORK\\EXACTLYONE:TSYSS([CODE]=\"Lkw_BV\")\\PCU",

 L"NETWORK\\EXACTLYONE:TSYSS([CODE]=\"Lkw_DV\")\\PCU",

 L"NETWORK\\EXACTLYONE:TSYSS([CODE]=\"Lkw_RV\")\\PCU",

};

int GetNumStaticAttributes()

{

 return LastId;

}

const wchar_t * GetStaticAttributeID(int attributesIndexZeroBased)

{

 return staticAttributeIDs[attributesIndexZeroBased];

}

void Destroy()

{

}

char IsThreadSafe()

{

 return TRUE;

}

char DependsOnTSys()

{

 return 2;

 // 2: VDF calculates the same value for all TSys and receives the the volumes per TSys

}

const wchar_t* GetName(const char *langid)

{

 return VDFName;

}

const char* GetID()

{

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 29 of 81 h2020-coexist.eu

 return VDFID;

}

int GetInterfaceVersion()

{

 return INTERFACE_VERSION;

}

static int sTSysIndex_P = -1;

static int sTSysIndex_CX_AV = -1;

static int sTSysIndex_LkwS_BV = -1;

static int sTSysIndex_LkwS_DV = -1;

static int sTSysIndex_LkwS_RV = -1;

static int sTSysIndex_Lkw_BV = -1;

static int sTSysIndex_Lkw_DV = -1;

static int sTSysIndex_Lkw_RV = -1;

void SetTsysInfo(int numtsys, const wchar_t * tsysids[])

{

 // -1 means "TSys does not exist"

 sTSysIndex_P = -1;

 sTSysIndex_CX_AV = -1;

 sTSysIndex_LkwS_BV = -1;

 sTSysIndex_LkwS_DV = -1;

 sTSysIndex_LkwS_RV = -1;

 sTSysIndex_Lkw_BV = -1;

 sTSysIndex_Lkw_DV = -1;

 sTSysIndex_Lkw_RV = -1;

 // assign TSys Code to the related index within the TSys array

 // will be done once at the beginning of an assignment by Visum

 for (int tsysInd = 0; tsysInd < numtsys; ++tsysInd) {

 // wcscmp executes string comparison

 // if return value == 0, strings are identical

 if (wcscmp(tsysids[tsysInd], L"P") == 0) {

 sTSysIndex_P = tsysInd;

 continue; // exit for-loop and begin with next iteration

 }

 else if (wcscmp(tsysids[tsysInd], L"CX_AV") == 0) {

 sTSysIndex_CX_AV = tsysInd;

 continue;

 }

 else if (wcscmp(tsysids[tsysInd], L"LkwS_BV") == 0) {

 sTSysIndex_LkwS_BV = tsysInd;

 continue;

 }

 else if (wcscmp(tsysids[tsysInd], L"LkwS_DV") == 0) {

 sTSysIndex_LkwS_DV = tsysInd;

 continue;

 }

 else if (wcscmp(tsysids[tsysInd], L"LkwS_RV") == 0) {

 sTSysIndex_LkwS_RV = tsysInd;

 continue;

 }

 else if (wcscmp(tsysids[tsysInd], L"Lkw_BV") == 0) {

 sTSysIndex_Lkw_BV = tsysInd;

 continue;

 }

 else if (wcscmp(tsysids[tsysInd], L"Lkw_DV") == 0) {

 sTSysIndex_Lkw_DV = tsysInd;

 continue;

 }

 else if (wcscmp(tsysids[tsysInd], L"Lkw_RV") == 0) {

 sTSysIndex_Lkw_RV = tsysInd;

 continue;

 }

 }

}

// specify calculation rule with improved user-defined VDF

double CalculateWithStaticAttributes(int tsysind, char tsysisopen, double cap, double t0,

 double pcuvol, double basevol, double vehvolsys[],

 double staticAttributeValues[],

 double para_a, double para_b, double para_c, double para_d, double para_f,

 double para_a2, double para_b2, double para_d2, double para_f2, double satcrit)

{

 double const av_ready = staticAttributeValues[CX_AV_READY];

 // get default PCU values

 double const pcu_P = staticAttributeValues[PCU_TSYS_P];

 double const pcu_LkwS_BV = staticAttributeValues[PCU_TSYS_LkwS_BV];

 double const pcu_LkwS_DV = staticAttributeValues[PCU_TSYS_LkwS_DV];

 double const pcu_LkwS_RV = staticAttributeValues[PCU_TSYS_LkwS_RV];

 double const pcu_Lkw_BV = staticAttributeValues[PCU_TSYS_Lkw_BV];

 double const pcu_Lkw_DV = staticAttributeValues[PCU_TSYS_Lkw_DV];

 double const pcu_Lkw_RV = staticAttributeValues[PCU_TSYS_Lkw_RV];

 // get possible PCU values for AV

 double pcu_CX_AV_used;

 double const pcu_CX_AV_default = staticAttributeValues[PCU_TSYS_CX_AV];

 double const pcu_CX_AV = staticAttributeValues[PCU_AV]; // PCU factor for each AV

 if (cap <= 0 || para_c <= 0) {

 return DBL_MAX;

 }

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 30 of 81 h2020-coexist.eu

 // add up vehicle numbers separately for CV and AV

 double vehvol_all_CV = vehvolsys[sTSysIndex_P] + vehvolsys[sTSysIndex_LkwS_BV] + vehvolsys[sTSysIndex_LkwS_DV] +

vehvolsys[sTSysIndex_LkwS_RV] + vehvolsys[sTSysIndex_Lkw_BV] + vehvolsys[sTSysIndex_Lkw_DV] + vehvolsys[sTSysIndex_Lkw_RV];

 double vehvol_all_AV = vehvolsys[sTSysIndex_CX_AV];

 // if there are no vehicles on the link, TTC corresponds to T0

 if (vehvol_all_CV + vehvol_all_AV == 0)

 return t0;

 // if link is not AV-ready, use TSys-default PCU factor for AV

 if (av_ready == 0)

 pcu_CX_AV_used = pcu_CX_AV_default;

 else // if link is AV-ready, used PCU factor depends on AV share

 pcu_CX_AV_used = pcu_CX_AV;

 // mutliply respective PCU factor with vehicle volume

 double pcuvol_CX_AV = pcu_CX_AV_used * vehvolsys[sTSysIndex_CX_AV];

 double pcuvol_P = pcu_P * vehvolsys[sTSysIndex_P];

 double pcuvol_LkwS_BV = pcu_LkwS_BV * vehvolsys[sTSysIndex_LkwS_BV];

 double pcuvol_LkwS_DV = pcu_LkwS_DV * vehvolsys[sTSysIndex_LkwS_DV];

 double pcuvol_LkwS_RV = pcu_LkwS_RV * vehvolsys[sTSysIndex_LkwS_RV];

 double pcuvol_Lkw_BV = pcu_Lkw_BV * vehvolsys[sTSysIndex_Lkw_BV];

 double pcuvol_Lkw_DV = pcu_Lkw_DV * vehvolsys[sTSysIndex_Lkw_DV];

 double pcuvol_Lkw_RV = pcu_Lkw_RV * vehvolsys[sTSysIndex_Lkw_RV];

 double const totalvol_pcu = pcuvol_P + pcuvol_CX_AV + pcuvol_LkwS_BV + pcuvol_LkwS_DV + pcuvol_LkwS_RV + pcuvol_Lkw_BV + pcuvol_Lkw_DV +

pcuvol_Lkw_RV;

 double const sat = totalvol_pcu / (cap * para_c);

 // return TTC (standard function as BPR)

 return t0 * (1 + para_a * (pow(sat, para_b)));

}

Figure 6 shows the preview picture “VisumVDF_CX_AV_PCU_CONST_BPR_2020_x64.bmp”, which is

displayed in Visum, if the user selects the related volume-delay function.

Figure 6: Preview picture with calculation rule

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 31 of 81 h2020-coexist.eu

VisumVDF_CX_AV_PCU_CONST_LOHSE_2020_x64.dll

#include "UserDefinedVDF_2020.h"

#include "tchar.h"

#include <math.h>

#include <float.h>

#include "string.h"

// VDF_Name appears as an entry in the dropdown list of volume-delay function types

wchar_t VDFName[] = _T("CX_AV_PCU_CONST_LOHSE_2020");

// VDFID is the internal name in the version file

char VDFID[] = "CX_AV_PCU_CONST_LOHSE_2020";

int INTERFACE_VERSION = 1;

#ifndef TRUE

#define TRUE 1

#endif

#ifndef FALSE

#define FALSE 0

#endif

char Init()

{

 return TRUE;

}

enum AttributeIndices

{

 CX_AV_READY,

 PCU_AV,

 PCU_TSYS_P,

 PCU_TSYS_CX_AV,

 PCU_TSYS_LkwS_BV,

 PCU_TSYS_LkwS_DV,

 PCU_TSYS_LkwS_RV,

 PCU_TSYS_Lkw_BV,

 PCU_TSYS_Lkw_DV,

 PCU_TSYS_Lkw_RV,

 LastId

};

static const int MyMaxIDLength = 100; // Character limit for Strings

static wchar_t staticAttributeIDs[LastId][MyMaxIDLength] =

{

 // Strings of attributeIDs from links below must correspond to the order of AttributeIndices

 L"CX_AV-READY",

 L"CX_F_PCU_AV",

 L"NETWORK\\EXACTLYONE:TSYSS([CODE]=\"P\")\\PCU", // please note: \\ = \ and \" = "

 L"NETWORK\\EXACTLYONE:TSYSS([CODE]=\"CX_AV\")\\PCU",

 L"NETWORK\\EXACTLYONE:TSYSS([CODE]=\"LkwS_BV\")\\PCU",

 L"NETWORK\\EXACTLYONE:TSYSS([CODE]=\"LkwS_DV\")\\PCU",

 L"NETWORK\\EXACTLYONE:TSYSS([CODE]=\"LkwS_RV\")\\PCU",

 L"NETWORK\\EXACTLYONE:TSYSS([CODE]=\"Lkw_BV\")\\PCU",

 L"NETWORK\\EXACTLYONE:TSYSS([CODE]=\"Lkw_DV\")\\PCU",

 L"NETWORK\\EXACTLYONE:TSYSS([CODE]=\"Lkw_RV\")\\PCU",

};

int GetNumStaticAttributes()

{

 return LastId;

}

const wchar_t * GetStaticAttributeID(int attributesIndexZeroBased)

{

 return staticAttributeIDs[attributesIndexZeroBased];

}

void Destroy()

{

}

char IsThreadSafe()

{

 return TRUE;

}

char DependsOnTSys()

{

 return 2;

 // 2: VDF calculates the same value for all TSys and receives the the volumes per TSys

}

const wchar_t* GetName(const char *langid)

{

 return VDFName;

}

const char* GetID()

{

 return VDFID;

}

int GetInterfaceVersion()

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 32 of 81 h2020-coexist.eu

{

 return INTERFACE_VERSION;

}

static int sTSysIndex_P = -1;

static int sTSysIndex_CX_AV = -1;

static int sTSysIndex_LkwS_BV = -1;

static int sTSysIndex_LkwS_DV = -1;

static int sTSysIndex_LkwS_RV = -1;

static int sTSysIndex_Lkw_BV = -1;

static int sTSysIndex_Lkw_DV = -1;

static int sTSysIndex_Lkw_RV = -1;

void SetTsysInfo(int numtsys, const wchar_t * tsysids[])

{

 // -1 means "TSys does not exist"

 sTSysIndex_P = -1;

 sTSysIndex_CX_AV = -1;

 sTSysIndex_LkwS_BV = -1;

 sTSysIndex_LkwS_DV = -1;

 sTSysIndex_LkwS_RV = -1;

 sTSysIndex_Lkw_BV = -1;

 sTSysIndex_Lkw_DV = -1;

 sTSysIndex_Lkw_RV = -1;

 // assign TSys Code to the related index within the TSys array

 // will be done once at the beginning of an assignment by Visum

 for (int tsysInd = 0; tsysInd < numtsys; ++tsysInd) {

 // wcscmp executes string comparison

 // if return value == 0, strings are identical

 if (wcscmp(tsysids[tsysInd], L"P") == 0) {

 sTSysIndex_P = tsysInd;

 continue; // exit for-loop and begin with next iteration

 }

 else if (wcscmp(tsysids[tsysInd], L"CX_AV") == 0) {

 sTSysIndex_CX_AV = tsysInd;

 continue;

 }

 else if (wcscmp(tsysids[tsysInd], L"LkwS_BV") == 0) {

 sTSysIndex_LkwS_BV = tsysInd;

 continue;

 }

 else if (wcscmp(tsysids[tsysInd], L"LkwS_DV") == 0) {

 sTSysIndex_LkwS_DV = tsysInd;

 continue;

 }

 else if (wcscmp(tsysids[tsysInd], L"LkwS_RV") == 0) {

 sTSysIndex_LkwS_RV = tsysInd;

 continue;

 }

 else if (wcscmp(tsysids[tsysInd], L"Lkw_BV") == 0) {

 sTSysIndex_Lkw_BV = tsysInd;

 continue;

 }

 else if (wcscmp(tsysids[tsysInd], L"Lkw_DV") == 0) {

 sTSysIndex_Lkw_DV = tsysInd;

 continue;

 }

 else if (wcscmp(tsysids[tsysInd], L"Lkw_RV") == 0) {

 sTSysIndex_Lkw_RV = tsysInd;

 continue;

 }

 }

}

// specify calculation rule with improved user-defined VDF

double CalculateWithStaticAttributes(int tsysind, char tsysisopen, double cap, double t0,

 double pcuvol, double basevol, double vehvolsys[],

 double staticAttributeValues[],

 double para_a, double para_b, double para_c, double para_d, double para_f,

 double para_a2, double para_b2, double para_d2, double para_f2, double satcrit)

{

 double const av_ready = staticAttributeValues[CX_AV_READY];

 // get default PCU values

 double const pcu_P = staticAttributeValues[PCU_TSYS_P];

 double const pcu_LkwS_BV = staticAttributeValues[PCU_TSYS_LkwS_BV];

 double const pcu_LkwS_DV = staticAttributeValues[PCU_TSYS_LkwS_DV];

 double const pcu_LkwS_RV = staticAttributeValues[PCU_TSYS_LkwS_RV];

 double const pcu_Lkw_BV = staticAttributeValues[PCU_TSYS_Lkw_BV];

 double const pcu_Lkw_DV = staticAttributeValues[PCU_TSYS_Lkw_DV];

 double const pcu_Lkw_RV = staticAttributeValues[PCU_TSYS_Lkw_RV];

 // get possible PCU values for AV

 double pcu_CX_AV_used;

 double const pcu_CX_AV_default = staticAttributeValues[PCU_TSYS_CX_AV];

 double const pcu_CX_AV = staticAttributeValues[PCU_AV]; // PCU factor for each AV

 if (cap <= 0 || para_c <= 0) {

 return DBL_MAX;

 }

 // add up vehicle numbers separately for CV and AV

 double vehvol_all_CV = vehvolsys[sTSysIndex_P] + vehvolsys[sTSysIndex_LkwS_BV] + vehvolsys[sTSysIndex_LkwS_DV] +

vehvolsys[sTSysIndex_LkwS_RV] + vehvolsys[sTSysIndex_Lkw_BV] + vehvolsys[sTSysIndex_Lkw_DV] + vehvolsys[sTSysIndex_Lkw_RV];

 double vehvol_all_AV = vehvolsys[sTSysIndex_CX_AV];

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 33 of 81 h2020-coexist.eu

 // if there are no vehicles on the link, TTC corresponds to T0

 if (vehvol_all_CV + vehvol_all_AV == 0)

 return t0;

 // if link is not AV-ready, use TSys-default PCU factor for AV

 if (av_ready == 0)

 pcu_CX_AV_used = pcu_CX_AV_default;

 else // if link is AV-ready, used PCU factor depends on AV share

 pcu_CX_AV_used = pcu_CX_AV;

 // mutliply respective PCU factor with vehicle volume

 double pcuvol_CX_AV = pcu_CX_AV_used * vehvolsys[sTSysIndex_CX_AV];

 double pcuvol_P = pcu_P * vehvolsys[sTSysIndex_P];

 double pcuvol_LkwS_BV = pcu_LkwS_BV * vehvolsys[sTSysIndex_LkwS_BV];

 double pcuvol_LkwS_DV = pcu_LkwS_DV * vehvolsys[sTSysIndex_LkwS_DV];

 double pcuvol_LkwS_RV = pcu_LkwS_RV * vehvolsys[sTSysIndex_LkwS_RV];

 double pcuvol_Lkw_BV = pcu_Lkw_BV * vehvolsys[sTSysIndex_Lkw_BV];

 double pcuvol_Lkw_DV = pcu_Lkw_DV * vehvolsys[sTSysIndex_Lkw_DV];

 double pcuvol_Lkw_RV = pcu_Lkw_RV * vehvolsys[sTSysIndex_Lkw_RV];

 double const totalvol_pcu = pcuvol_P + pcuvol_CX_AV + pcuvol_LkwS_BV + pcuvol_LkwS_DV + pcuvol_LkwS_RV + pcuvol_Lkw_BV + pcuvol_Lkw_DV +

pcuvol_Lkw_RV;

 double const sat = totalvol_pcu / (cap * para_c);

 // return TTC (standard function as LOHSE)

 if (sat <= satcrit)

 return t0 * (1 + para_a * (pow(sat, para_b)));

 else // sat > satcrit

 return t0 * (1 + para_a * (pow(satcrit, para_b))) + para_a * para_b * t0 * (sat - satcrit) * (pow(satcrit, para_b - 1));

}

Figure 7 shows the preview picture “VisumVDF_CX_AV_PCU_CONST_LOHSE_2020_x64.bmp”, which

is displayed in Visum, if the user selects the related volume-delay function.

Figure 7: Preview picture with calculation rule

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 34 of 81 h2020-coexist.eu

VisumVDF_CX_AV_PCU_VAR_BPR_2020_x64.dll

#include "UserDefinedVDF_2020.h"

#include "tchar.h"

#include <math.h>

#include <float.h>

#include "string.h"

// VDF_Name appears as an entry in the dropdown list of volume-delay function types

wchar_t VDFName[] = _T("CX_AV_PCU_VAR_BPR_2020");

// VDFID is the internal name in the version file

char VDFID[] = "CX_AV_PCU_VAR_BPR_2020";

int INTERFACE_VERSION = 1;

#ifndef TRUE

#define TRUE 1

#endif

#ifndef FALSE

#define FALSE 0

#endif

char Init()

{

 return TRUE;

}

enum AttributeIndices

{

 CX_AV_READY,

 PCU_AV_0,

 PCU_AV_1,

 PCU_TSYS_P,

 PCU_TSYS_CX_AV,

 PCU_TSYS_LkwS_BV,

 PCU_TSYS_LkwS_DV,

 PCU_TSYS_LkwS_RV,

 PCU_TSYS_Lkw_BV,

 PCU_TSYS_Lkw_DV,

 PCU_TSYS_Lkw_RV,

 LastId

};

static const int MyMaxIDLength = 100; // Character limit for Strings

static wchar_t staticAttributeIDs[LastId][MyMaxIDLength] =

{

 // Strings of attributeIDs from links below must correspond to the order of AttributeIndices

 L"CX_AV-READY",

 L"CX_F_PCU_AV_0",

 L"CX_F_PCU_AV_1",

 L"NETWORK\\EXACTLYONE:TSYSS([CODE]=\"P\")\\PCU", // please note: \\ = \ and \" = "

 L"NETWORK\\EXACTLYONE:TSYSS([CODE]=\"CX_AV\")\\PCU",

 L"NETWORK\\EXACTLYONE:TSYSS([CODE]=\"LkwS_BV\")\\PCU",

 L"NETWORK\\EXACTLYONE:TSYSS([CODE]=\"LkwS_DV\")\\PCU",

 L"NETWORK\\EXACTLYONE:TSYSS([CODE]=\"LkwS_RV\")\\PCU",

 L"NETWORK\\EXACTLYONE:TSYSS([CODE]=\"Lkw_BV\")\\PCU",

 L"NETWORK\\EXACTLYONE:TSYSS([CODE]=\"Lkw_DV\")\\PCU",

 L"NETWORK\\EXACTLYONE:TSYSS([CODE]=\"Lkw_RV\")\\PCU",

};

int GetNumStaticAttributes()

{

 return LastId;

}

const wchar_t * GetStaticAttributeID(int attributesIndexZeroBased)

{

 return staticAttributeIDs[attributesIndexZeroBased];

}

void Destroy()

{

}

char IsThreadSafe()

{

 return TRUE;

}

char DependsOnTSys()

{

 return 2;

 // 2: VDF calculates the same value for all TSys and receives the the volumes per TSys

}

const wchar_t* GetName(const char *langid)

{

 return VDFName;

}

const char* GetID()

{

 return VDFID;

}

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 35 of 81 h2020-coexist.eu

int GetInterfaceVersion()

{

 return INTERFACE_VERSION;

}

static int sTSysIndex_P = -1;

static int sTSysIndex_CX_AV = -1;

static int sTSysIndex_LkwS_BV = -1;

static int sTSysIndex_LkwS_DV = -1;

static int sTSysIndex_LkwS_RV = -1;

static int sTSysIndex_Lkw_BV = -1;

static int sTSysIndex_Lkw_DV = -1;

static int sTSysIndex_Lkw_RV = -1;

void SetTsysInfo(int numtsys, const wchar_t * tsysids[])

{

 // -1 means "TSys does not exist"

 sTSysIndex_P = -1;

 sTSysIndex_CX_AV = -1;

 sTSysIndex_LkwS_BV = -1;

 sTSysIndex_LkwS_DV = -1;

 sTSysIndex_LkwS_RV = -1;

 sTSysIndex_Lkw_BV = -1;

 sTSysIndex_Lkw_DV = -1;

 sTSysIndex_Lkw_RV = -1;

 // assign TSys Code to the related index within the TSys array

 // will be done once at the beginning of an assignment by Visum

 for (int tsysInd = 0; tsysInd < numtsys; ++tsysInd) {

 // wcscmp executes string comparison

 // if return value == 0, strings are identical

 if (wcscmp(tsysids[tsysInd], L"P") == 0) {

 sTSysIndex_P = tsysInd;

 continue; // exit for-loop and begin with next iteration

 }

 else if (wcscmp(tsysids[tsysInd], L"CX_AV") == 0) {

 sTSysIndex_CX_AV = tsysInd;

 continue;

 }

 else if (wcscmp(tsysids[tsysInd], L"LkwS_BV") == 0) {

 sTSysIndex_LkwS_BV = tsysInd;

 continue;

 }

 else if (wcscmp(tsysids[tsysInd], L"LkwS_DV") == 0) {

 sTSysIndex_LkwS_DV = tsysInd;

 continue;

 }

 else if (wcscmp(tsysids[tsysInd], L"LkwS_RV") == 0) {

 sTSysIndex_LkwS_RV = tsysInd;

 continue;

 }

 else if (wcscmp(tsysids[tsysInd], L"Lkw_BV") == 0) {

 sTSysIndex_Lkw_BV = tsysInd;

 continue;

 }

 else if (wcscmp(tsysids[tsysInd], L"Lkw_DV") == 0) {

 sTSysIndex_Lkw_DV = tsysInd;

 continue;

 }

 else if (wcscmp(tsysids[tsysInd], L"Lkw_RV") == 0) {

 sTSysIndex_Lkw_RV = tsysInd;

 continue;

 }

 }

}

// specify calculation rule with improved user-defined VDF

double CalculateWithStaticAttributes(int tsysind, char tsysisopen, double cap, double t0,

 double pcuvol, double basevol, double vehvolsys[],

 double staticAttributeValues[],

 double para_a, double para_b, double para_c, double para_d, double para_f,

 double para_a2, double para_b2, double para_d2, double para_f2, double satcrit)

{

 double const av_ready = staticAttributeValues[CX_AV_READY];

 // get default PCU values

 double const pcu_P = staticAttributeValues[PCU_TSYS_P];

 double const pcu_LkwS_BV = staticAttributeValues[PCU_TSYS_LkwS_BV];

 double const pcu_LkwS_DV = staticAttributeValues[PCU_TSYS_LkwS_DV];

 double const pcu_LkwS_RV = staticAttributeValues[PCU_TSYS_LkwS_RV];

 double const pcu_Lkw_BV = staticAttributeValues[PCU_TSYS_Lkw_BV];

 double const pcu_Lkw_DV = staticAttributeValues[PCU_TSYS_Lkw_DV];

 double const pcu_Lkw_RV = staticAttributeValues[PCU_TSYS_Lkw_RV];

 // get possible PCU values for AV

 double pcu_CX_AV_used;

 double const pcu_CX_AV_default = staticAttributeValues[PCU_TSYS_CX_AV];

 double const pcu_CX_AV_0 = staticAttributeValues[PCU_AV_0]; // PCU factor for "first AV"

 double const pcu_CX_AV_1 = staticAttributeValues[PCU_AV_1]; // PCU factor for 100% AV

 if (cap <= 0 || para_c <= 0) {

 return DBL_MAX;

 }

 // add up vehicle numbers separately for CV and AV

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 36 of 81 h2020-coexist.eu

 double vehvol_all_CV = vehvolsys[sTSysIndex_P] + vehvolsys[sTSysIndex_LkwS_BV] + vehvolsys[sTSysIndex_LkwS_DV] +

vehvolsys[sTSysIndex_LkwS_RV] + vehvolsys[sTSysIndex_Lkw_BV] + vehvolsys[sTSysIndex_Lkw_DV] + vehvolsys[sTSysIndex_Lkw_RV];

 double vehvol_all_AV = vehvolsys[sTSysIndex_CX_AV];

 // to calculate the current AV share on the link

 double av_share = vehvol_all_AV / (vehvol_all_CV + vehvol_all_AV);

 // if there are no vehicles on the link, TTC corresponds to T0

 if (vehvol_all_CV + vehvol_all_AV == 0)

 return t0;

 // if link is not AV-ready, use TSys-default PCU factor for AV

 if (av_ready == 0)

 pcu_CX_AV_used = pcu_CX_AV_default;

 else // if link is AV-ready, used PCU factor depends on AV share

 pcu_CX_AV_used = pcu_CX_AV_0 - av_share * (pcu_CX_AV_0 - pcu_CX_AV_1);

 // mutliply respective PCU factor with vehicle volume

 double pcuvol_CX_AV = pcu_CX_AV_used * vehvolsys[sTSysIndex_CX_AV];

 double pcuvol_P = pcu_P * vehvolsys[sTSysIndex_P];

 double pcuvol_LkwS_BV = pcu_LkwS_BV * vehvolsys[sTSysIndex_LkwS_BV];

 double pcuvol_LkwS_DV = pcu_LkwS_DV * vehvolsys[sTSysIndex_LkwS_DV];

 double pcuvol_LkwS_RV = pcu_LkwS_RV * vehvolsys[sTSysIndex_LkwS_RV];

 double pcuvol_Lkw_BV = pcu_Lkw_BV * vehvolsys[sTSysIndex_Lkw_BV];

 double pcuvol_Lkw_DV = pcu_Lkw_DV * vehvolsys[sTSysIndex_Lkw_DV];

 double pcuvol_Lkw_RV = pcu_Lkw_RV * vehvolsys[sTSysIndex_Lkw_RV];

 double const totalvol_pcu = pcuvol_P + pcuvol_CX_AV + pcuvol_LkwS_BV + pcuvol_LkwS_DV + pcuvol_LkwS_RV + pcuvol_Lkw_BV + pcuvol_Lkw_DV +

pcuvol_Lkw_RV;

 double const sat = totalvol_pcu / (cap * para_c);

 // return TTC (standard function as BPR)

 return t0 * (1 + para_a * (pow(sat, para_b)));

}

Figure 8 shows the preview picture “VisumVDF_CX_AV_PCU_VAR_BPR_2020_x64.bmp”, which is

displayed in Visum, if the user selects the related volume-delay function.

Figure 8: Preview picture with calculation rule

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 37 of 81 h2020-coexist.eu

VisumVDF_CX_AV_PCU_VAR_LOHSE_2020_x64.dll

#include "UserDefinedVDF_2020.h"

#include "tchar.h"

#include <math.h>

#include <float.h>

#include "string.h"

// VDF_Name appears as an entry in the dropdown list of volume-delay function types

wchar_t VDFName[] = _T("CX_AV_PCU_VAR_LOHSE_2020");

// VDFID is the internal name in the version file

char VDFID[] = "CX_AV_PCU_VAR_LOHSE_2020";

int INTERFACE_VERSION = 1;

#ifndef TRUE

#define TRUE 1

#endif

#ifndef FALSE

#define FALSE 0

#endif

char Init()

{

 return TRUE;

}

enum AttributeIndices

{

 CX_AV_READY,

 PCU_AV_0,

 PCU_AV_1,

 PCU_TSYS_P,

 PCU_TSYS_CX_AV,

 PCU_TSYS_LkwS_BV,

 PCU_TSYS_LkwS_DV,

 PCU_TSYS_LkwS_RV,

 PCU_TSYS_Lkw_BV,

 PCU_TSYS_Lkw_DV,

 PCU_TSYS_Lkw_RV,

 LastId

};

static const int MyMaxIDLength = 100; // Character limit for Strings

static wchar_t staticAttributeIDs[LastId][MyMaxIDLength] =

{

 // Strings of attributeIDs from links below must correspond to the order of AttributeIndices

 L"CX_AV-READY",

 L"CX_F_PCU_AV_0",

 L"CX_F_PCU_AV_1",

 L"NETWORK\\EXACTLYONE:TSYSS([CODE]=\"P\")\\PCU", // please note: \\ = \ and \" = "

 L"NETWORK\\EXACTLYONE:TSYSS([CODE]=\"CX_AV\")\\PCU",

 L"NETWORK\\EXACTLYONE:TSYSS([CODE]=\"LkwS_BV\")\\PCU",

 L"NETWORK\\EXACTLYONE:TSYSS([CODE]=\"LkwS_DV\")\\PCU",

 L"NETWORK\\EXACTLYONE:TSYSS([CODE]=\"LkwS_RV\")\\PCU",

 L"NETWORK\\EXACTLYONE:TSYSS([CODE]=\"Lkw_BV\")\\PCU",

 L"NETWORK\\EXACTLYONE:TSYSS([CODE]=\"Lkw_DV\")\\PCU",

 L"NETWORK\\EXACTLYONE:TSYSS([CODE]=\"Lkw_RV\")\\PCU",

};

int GetNumStaticAttributes()

{

 return LastId;

}

const wchar_t * GetStaticAttributeID(int attributesIndexZeroBased)

{

 return staticAttributeIDs[attributesIndexZeroBased];

}

void Destroy()

{

}

char IsThreadSafe()

{

 return TRUE;

}

char DependsOnTSys()

{

 return 2;

 // 2: VDF calculates the same value for all TSys and receives the the volumes per TSys

}

const wchar_t* GetName(const char *langid)

{

 return VDFName;

}

const char* GetID()

{

 return VDFID;

}

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 38 of 81 h2020-coexist.eu

int GetInterfaceVersion()

{

 return INTERFACE_VERSION;

}

static int sTSysIndex_P = -1;

static int sTSysIndex_CX_AV = -1;

static int sTSysIndex_LkwS_BV = -1;

static int sTSysIndex_LkwS_DV = -1;

static int sTSysIndex_LkwS_RV = -1;

static int sTSysIndex_Lkw_BV = -1;

static int sTSysIndex_Lkw_DV = -1;

static int sTSysIndex_Lkw_RV = -1;

void SetTsysInfo(int numtsys, const wchar_t * tsysids[])

{

 // -1 means "TSys does not exist"

 sTSysIndex_P = -1;

 sTSysIndex_CX_AV = -1;

 sTSysIndex_LkwS_BV = -1;

 sTSysIndex_LkwS_DV = -1;

 sTSysIndex_LkwS_RV = -1;

 sTSysIndex_Lkw_BV = -1;

 sTSysIndex_Lkw_DV = -1;

 sTSysIndex_Lkw_RV = -1;

 // assign TSys Code to the related index within the TSys array

 // will be done once at the beginning of an assignment by Visum

 for (int tsysInd = 0; tsysInd < numtsys; ++tsysInd) {

 // wcscmp executes string comparison

 // if return value == 0, strings are identical

 if (wcscmp(tsysids[tsysInd], L"P") == 0) {

 sTSysIndex_P = tsysInd;

 continue; // exit for-loop and begin with next iteration

 }

 else if (wcscmp(tsysids[tsysInd], L"CX_AV") == 0) {

 sTSysIndex_CX_AV = tsysInd;

 continue;

 }

 else if (wcscmp(tsysids[tsysInd], L"LkwS_BV") == 0) {

 sTSysIndex_LkwS_BV = tsysInd;

 continue;

 }

 else if (wcscmp(tsysids[tsysInd], L"LkwS_DV") == 0) {

 sTSysIndex_LkwS_DV = tsysInd;

 continue;

 }

 else if (wcscmp(tsysids[tsysInd], L"LkwS_RV") == 0) {

 sTSysIndex_LkwS_RV = tsysInd;

 continue;

 }

 else if (wcscmp(tsysids[tsysInd], L"Lkw_BV") == 0) {

 sTSysIndex_Lkw_BV = tsysInd;

 continue;

 }

 else if (wcscmp(tsysids[tsysInd], L"Lkw_DV") == 0) {

 sTSysIndex_Lkw_DV = tsysInd;

 continue;

 }

 else if (wcscmp(tsysids[tsysInd], L"Lkw_RV") == 0) {

 sTSysIndex_Lkw_RV = tsysInd;

 continue;

 }

 }

}

// specify calculation rule with improved user-defined VDF

double CalculateWithStaticAttributes(int tsysind, char tsysisopen, double cap, double t0,

 double pcuvol, double basevol, double vehvolsys[],

 double staticAttributeValues[],

 double para_a, double para_b, double para_c, double para_d, double para_f,

 double para_a2, double para_b2, double para_d2, double para_f2, double satcrit)

{

 double const av_ready = staticAttributeValues[CX_AV_READY];

 // get default PCU values

 double const pcu_P = staticAttributeValues[PCU_TSYS_P];

 double const pcu_LkwS_BV = staticAttributeValues[PCU_TSYS_LkwS_BV];

 double const pcu_LkwS_DV = staticAttributeValues[PCU_TSYS_LkwS_DV];

 double const pcu_LkwS_RV = staticAttributeValues[PCU_TSYS_LkwS_RV];

 double const pcu_Lkw_BV = staticAttributeValues[PCU_TSYS_Lkw_BV];

 double const pcu_Lkw_DV = staticAttributeValues[PCU_TSYS_Lkw_DV];

 double const pcu_Lkw_RV = staticAttributeValues[PCU_TSYS_Lkw_RV];

 // get possible PCU values for AV

 double pcu_CX_AV_used;

 double const pcu_CX_AV_default = staticAttributeValues[PCU_TSYS_CX_AV];

 double const pcu_CX_AV_0 = staticAttributeValues[PCU_AV_0]; // PCU factor for "first AV"

 double const pcu_CX_AV_1 = staticAttributeValues[PCU_AV_1]; // PCU factor for 100% AV

 if (cap <= 0 || para_c <= 0) {

 return DBL_MAX;

 }

 // add up vehicle numbers separately for CV and AV

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 39 of 81 h2020-coexist.eu

 double vehvol_all_CV = vehvolsys[sTSysIndex_P] + vehvolsys[sTSysIndex_LkwS_BV] + vehvolsys[sTSysIndex_LkwS_DV] +

vehvolsys[sTSysIndex_LkwS_RV] + vehvolsys[sTSysIndex_Lkw_BV] + vehvolsys[sTSysIndex_Lkw_DV] + vehvolsys[sTSysIndex_Lkw_RV];

 double vehvol_all_AV = vehvolsys[sTSysIndex_CX_AV];

 // to calculate the current AV share on the link

 double av_share = vehvol_all_AV / (vehvol_all_CV + vehvol_all_AV);

 // if there are no vehicles on the link, TTC corresponds to T0

 if (vehvol_all_CV + vehvol_all_AV == 0)

 return t0;

 // if link is not AV-ready, use TSys-default PCU factor for AV

 if (av_ready == 0)

 pcu_CX_AV_used = pcu_CX_AV_default;

 else // if link is AV-ready, used PCU factor depends on AV share

 pcu_CX_AV_used = pcu_CX_AV_0 - av_share * (pcu_CX_AV_0 - pcu_CX_AV_1);

 // mutliply respective PCU factor with vehicle volume

 double pcuvol_CX_AV = pcu_CX_AV_used * vehvolsys[sTSysIndex_CX_AV];

 double pcuvol_P = pcu_P * vehvolsys[sTSysIndex_P];

 double pcuvol_LkwS_BV = pcu_LkwS_BV * vehvolsys[sTSysIndex_LkwS_BV];

 double pcuvol_LkwS_DV = pcu_LkwS_DV * vehvolsys[sTSysIndex_LkwS_DV];

 double pcuvol_LkwS_RV = pcu_LkwS_RV * vehvolsys[sTSysIndex_LkwS_RV];

 double pcuvol_Lkw_BV = pcu_Lkw_BV * vehvolsys[sTSysIndex_Lkw_BV];

 double pcuvol_Lkw_DV = pcu_Lkw_DV * vehvolsys[sTSysIndex_Lkw_DV];

 double pcuvol_Lkw_RV = pcu_Lkw_RV * vehvolsys[sTSysIndex_Lkw_RV];

 double const totalvol_pcu = pcuvol_P + pcuvol_CX_AV + pcuvol_LkwS_BV + pcuvol_LkwS_DV + pcuvol_LkwS_RV + pcuvol_Lkw_BV + pcuvol_Lkw_DV +

pcuvol_Lkw_RV;

 double const sat = totalvol_pcu / (cap * para_c);

 // return TTC (standard function as LOHSE)

 if (sat <= satcrit)

 return t0 * (1 + para_a * (pow(sat, para_b)));

 else // sat > satcrit

 return t0 * (1 + para_a * (pow(satcrit, para_b))) + para_a * para_b * t0 * (sat - satcrit) * (pow(satcrit, para_b - 1));

}

Figure 9 shows the preview picture “VisumVDF_CX_AV_PCU_VAR_LOHSE_2020_x64.bmp”, which is

displayed in Visum, if the user selects the related volume-delay function.

Figure 9: Preview picture with calculation rule

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 40 of 81 h2020-coexist.eu

6.2 Tool: Perception of automated travel time

6.2.1 Script file: User-defined attributes

The submitted file “CoEXist_Create_User-Defined_Attributes_-

_Extension_for_perceived_automated_travel_time_impacts.vbs” contains the following code:

Visum 18 or lower

'**

' This script creates user-defined attributes for different network elements in Visum

' CoEXist - WP2 Macroscopic Modelling Tool

' USTUTT - University of Stuttgart

' October 2018

'**

' One call for creating each user-defined attribute (UDA)

' AddUDA is defined below

Call Add_UDA("Links", "CX_AV-READY", "CX_AV-READY", 1, 0, 0, 1, 0, "", false)

Call Add_UDA("Linktypes", "CX_AV-READY", "CX_AV-READY", 1, 0, 0, 1, 0, "", false)

Call Add_UDA("Links", "CX_TTC_AV-READY", "CX_TTC_AV-READY", 165, 2, 0, 0, 0, "IF([LINKTYPE\CX_AV-READY]=1,[TCUR_PRTSYS(P)],0)", false)

Call Add_UDA("Net", "CX_AV-SHARE", "CX_AV-SHARE", 1, 0, 0, 100, 0, "", false)

Call Add_UDA("Net", "CX_THRESHOLD_IVT-PERCEPTION_A", "CX_THRESHOLD_IVT-PERCEPTION_A", 1, 0, 0, 0, 0, "", false)

Call Add_UDA("Net", "CX_IVT-PERCEPTION_FACTOR", "CX_IVT-PERCEPTION_FACTOR", 2, 2, 0, 0, 1, "", false)

Call Add_UDA("Matrices", "CX_ID", "CX_ID", 5, 0, 0, 0, "", "", false)

' One call for adding a comment to each user-defined attribute

' SetUDAComment is defined below

Call Set_UDA_Comment("Links", "CX_AV-READY", "0: link is not AV-ready, 1: link is AV-ready")

Call Set_UDA_Comment("Links", "CX_TTC_AV-READY", "Current travel time on AV-ready links [min]")

Call Set_UDA_Comment("Linktypes", "CX_AV-READY", "0: link type is not AV-ready, 1: link type is AV-ready")

Call Set_UDA_Comment("Net", "CX_AV-SHARE", "Fixed AV share as a percentage for splitting the demand")

Call Set_UDA_Comment("Net", "CX_THRESHOLD_IVT-PERCEPTION_A", "Threshold A for the perception of in-vehicle time in automated

driving mode [min]. For a travel time in automated mode longer than A, the factor for perceived automated travel time will have an effect.")

Call Set_UDA_Comment("Net", "CX_IVT-PERCEPTION_FACTOR", "Factor for the perception of in-vehicle time in automated driving

mode")

Call Set_UDA_Comment("Matrices", "CX_ID", "CoEXist-unique identifier for working with formula matrices")

'**

' Commonly used ValueTypes:

' Member Value Summary

' ValueType_Int 1 Integer value (int)

' ValueType_Real 2 Real value (real)

' ValueType_String 5 String value (char*)

' ValueType_Duration 6 Duration (seconds or minutes depending on time format option)

' ValueType_TimePoint 7 Time stamp in seconds

' ValueType_Bool 9 Boolean value (true / false)

' ValueType_LongDuration 165 Precise duration (seconds or minutes depending on time format option)

'**

'**

' Definitions of subs and functions below

'**

' Creates a user-defined attribute as specified above

Sub Add_UDA(ObjId, UDA_Code, UDA_Name, ValueType, Decplaces, MinVal, MaxVal, DefVal, Formula, canBeEmpty)

 If UDA_Name= "" then UDA_Name=UDA_Code

 On Error Resume Next

 Set VisObjects = GetVisObj(ObjId)

 VisObjects.AddUserDefinedAttribute UDA_Code, UDA_Code, UDA_Name, ValueType, Decplaces, , MinVal, MaxVal, DefVal, , , Formula, canBeEmpty

End Sub

' Sets a comment for a user-defined attribute as specified above

Sub Set_UDA_Comment(ObjId, UDA_Code, UDA_Comment)

 Set VisObjects = GetVisObj(ObjId)

 For Each Obj In VisObjects.Attributes.GetAll

 If Obj.Code = UDA_Code Then

 Obj.Comment = UDA_Comment

 Exit For

 End If

 Next

End Sub

' Gets a pointer to a Visum object class

Function GetVisObj(ObjID)

ObjID = LCase(ObjID)

 If ObjId = "net" Then

 Set VisObjects=Visum.Net

 ElseIf ObjId = "links" Then

 Set VisObjects=Visum.Net.Links

 ElseIf ObjId = "linktypes" Then

 Set VisObjects=Visum.Net.LinkTypes

 ElseIf ObjId = "matrices" Then

 Set VisObjects = Visum.Net.Matrices

 End If

Set GetVisObj=VisObjects

End Function

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 41 of 81 h2020-coexist.eu

Visum 2020

'**

' This script creates user-defined attributes for different network elements in Visum

' CoEXist - WP2 Macroscopic Modelling Tool

' USTUTT - University of Stuttgart

' February 2020

'**

' One call for creating each user-defined attribute (UDA)

' AddUDA is defined below

Call Add_UDA("Links", "CX_AV-READY", "CX_AV-READY", 1, 0, 0, 1, 0, "",

false)

Call Add_UDA("Links", "CX_TTC_AV-READY", "CX_TTC_AV-READY", 165, 2, 0, 0, 0, "IF([CX_AV-

READY]=1,[TCUR_PRTSYS(P)],0)", false)

Call Add_UDA("Net", "CX_AV-SHARE", "CX_AV-SHARE", 1, 0, 0, 100, 0, "",

false)

Call Add_UDA("Net", "CX_THRESHOLD_IVT-PERCEPTION", "CX_THRESHOLD_IVT-PERCEPTION", 1, 0, 0, 0, 0, "",

false)

Call Add_UDA("Net", "CX_IVT-PERCEPTION_FACTOR", "CX_IVT-PERCEPTION_FACTOR", 2, 2, 0, 0, 1, "",

false)

Call Add_UDA("Matrices", "CX_ID", "CX_ID", 5, 0, 0, 0, "", "",

false)

' One call for adding a comment to each user-defined attribute

' SetUDAComment is defined below

Call Set_UDA_Comment("Links", "CX_AV-READY", "0: link is not AV-ready, 1: link is AV-ready")

Call Set_UDA_Comment("Links", "CX_TTC_AV-READY", "Current travel time on AV-ready links [min]")

Call Set_UDA_Comment("Net", "CX_AV-SHARE", "Fixed AV share as a percentage for splitting the demand")

Call Set_UDA_Comment("Net", "CX_THRESHOLD_IVT-PERCEPTION", "Threshold for the perception of in-vehicle time in automated driving

mode [min]. For a travel time in automated mode longer than A, the factor for perceived automated travel time will have an effect.")

Call Set_UDA_Comment("Net", "CX_IVT-PERCEPTION_FACTOR", "Factor for the perception of in-vehicle time in automated driving

mode")

Call Set_UDA_Comment("Matrices", "CX_ID", "CoEXist-unique identifier for working with formula matrices")

'**

' Commonly used ValueTypes:

' Member Value Summary

' ValueType_Int 1 Integer value (int)

' ValueType_Real 2 Real value (real)

' ValueType_String 5 String value (char*)

' ValueType_Duration 6 Duration (seconds or minutes depending on time format option)

' ValueType_TimePoint 7 Time stamp in seconds

' ValueType_Bool 9 Boolean value (true / false)

' ValueType_LongDuration 165 Precise duration (seconds or minutes depending on time format option)

'**

'**

' Definitions of subs and functions below

'**

' Creates a user-defined attribute as specified above

Sub Add_UDA(ObjId, UDA_Code, UDA_Name, ValueType, Decplaces, MinVal, MaxVal, DefVal, Formula, canBeEmpty)

 If UDA_Name= "" then UDA_Name=UDA_Code

 On Error Resume Next

 Set VisObjects = GetVisObj(ObjId)

 VisObjects.AddUserDefinedAttribute UDA_Code, UDA_Code, UDA_Name, ValueType, Decplaces, , MinVal, MaxVal, DefVal, , , Formula, ,

canBeEmpty

End Sub

' Sets a comment for a user-defined attribute as specified above

Sub Set_UDA_Comment(ObjId, UDA_Code, UDA_Comment)

 Set VisObjects = GetVisObj(ObjId)

 For Each Obj In VisObjects.Attributes.GetAll

 If Obj.Code = UDA_Code Then

 Obj.Comment = UDA_Comment

 Exit For

 End If

 Next

End Sub

' Gets a pointer to a Visum object class

Function GetVisObj(ObjID)

ObjID = LCase(ObjID)

 If ObjId = "net" Then

 Set VisObjects=Visum.Net

 ElseIf ObjId = "links" Then

 Set VisObjects=Visum.Net.Links

 ElseIf ObjId = "linktypes" Then

 Set VisObjects=Visum.Net.LinkTypes

 ElseIf ObjId = "matrices" Then

 Set VisObjects = Visum.Net.Matrices

 End If

Set GetVisObj=VisObjects

End Function

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 42 of 81 h2020-coexist.eu

6.2.2 Procedure sequence

The submitted file “CoEXist_Procedure_Parameters_-

_Extension_for_perceived_automated_travel_time_impacts.xml” contains the following code:

Visum 18 or lower

<?xml version = "1.0" encoding = "UTF-8"?>

<PROCEDURES VERSION = "1705">

 <OPERATIONS>

 <OPERATION

 NO = "1"

 CODE = ""

 OPERATIONTYPE = "Group"

 ACTIVE = "1"

 COMMENT = "Set AV-related attributes regarding perceived automated travel time"

 EXECUTED = "0"

 STARTTIME = ""

 ENDTIME = ""

 DURATION = ""

 MESSAGES = ""

 RESULTMESSAGE = ""

 SUCCESS = "0"

 COMPUTENODE = ""

 WARNINGCOUNT = ""

 ERRORCOUNT = ""

 INFORMATIONCOUNT = "">

 <GROUPPARA ISEXPANDED = "1" />

 </OPERATION>

 <OPERATION

 NO = "2"

 CODE = ""

 OPERATIONTYPE = "EditAttribute"

 ACTIVE = "1"

 COMMENT = "User input: AV share [percentage]"

 EXECUTED = "0"

 STARTTIME = ""

 ENDTIME = ""

 DURATION = ""

 MESSAGES = ""

 RESULTMESSAGE = ""

 SUCCESS = "0"

 COMPUTENODE = ""

 WARNINGCOUNT = ""

 ERRORCOUNT = ""

 INFORMATIONCOUNT = "">

 <ATTRIBUTEFORMULAPARA

 NETOBJECTTYPE = "NETWORK"

 INCLUDESUBCATEGORIES = "0"

 RESULTATTRNAME = "CX_AV-SHARE"

 ONLYACTIVE = "0"

 FORMULA = "50"

 />

 </OPERATION>

 <OPERATION

 NO = "3"

 CODE = ""

 OPERATIONTYPE = "EditAttribute"

 ACTIVE = "1"

 COMMENT = "User input: threshold A for automated in-vehicle time perception [min]"

 EXECUTED = "0"

 STARTTIME = ""

 ENDTIME = ""

 DURATION = ""

 MESSAGES = ""

 RESULTMESSAGE = ""

 SUCCESS = "0"

 COMPUTENODE = ""

 WARNINGCOUNT = ""

 ERRORCOUNT = ""

 INFORMATIONCOUNT = "">

 <ATTRIBUTEFORMULAPARA

 NETOBJECTTYPE = "NETWORK"

 INCLUDESUBCATEGORIES = "0"

 RESULTATTRNAME = "CX_THRESHOLD_IVT-PERCEPTION_A"

 ONLYACTIVE = "0"

 FORMULA = "10"

 />

 </OPERATION>

 <OPERATION

 NO = "4"

 CODE = ""

 OPERATIONTYPE = "EditAttribute"

 ACTIVE = "1"

 COMMENT = "User input: factor A for automated in-vehicle time perception"

 EXECUTED = "0"

 STARTTIME = ""

 ENDTIME = ""

 DURATION = ""

 MESSAGES = ""

 RESULTMESSAGE = ""

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 43 of 81 h2020-coexist.eu

 SUCCESS = "0"

 COMPUTENODE = ""

 WARNINGCOUNT = ""

 ERRORCOUNT = ""

 INFORMATIONCOUNT = "">

 <ATTRIBUTEFORMULAPARA

 NETOBJECTTYPE = "NETWORK"

 INCLUDESUBCATEGORIES = "0"

 RESULTATTRNAME = "CX_IVT-PERCEPTION_FACTOR"

 ONLYACTIVE = "0"

 FORMULA = "0.8"

 />

 </OPERATION>

 </OPERATIONS>

</PROCEDURES>

Visum 2020

<?xml version = "1.0" encoding = "UTF-8"?>

<PROCEDURES VERSION = "1902">

 <OPERATIONS>

 <OPERATION

 NO = "1"

 CODE = ""

 OPERATIONTYPE = "Group"

 ACTIVE = "1"

 COMMENT = "Set AV-related attributes regarding perceived automated travel time"

 EXECUTED = "0"

 STARTTIME = ""

 ENDTIME = ""

 DURATION = ""

 MESSAGES = ""

 RESULTMESSAGE = ""

 SUCCESS = "0"

 COMPUTENODES = ""

 WARNINGCOUNT = ""

 ERRORCOUNT = ""

 INFORMATIONCOUNT = ""

 OPERATIONVARIABLECOUNT = "">

 <GROUPPARA ISEXPANDED = "1" />

 </OPERATION>

 <OPERATION

 NO = "2"

 CODE = ""

 OPERATIONTYPE = "EditAttribute"

 ACTIVE = "1"

 COMMENT = "User input: AV share [percentage: 50 = 50%]"

 EXECUTED = "0"

 STARTTIME = ""

 ENDTIME = ""

 DURATION = ""

 MESSAGES = ""

 RESULTMESSAGE = ""

 SUCCESS = "0"

 COMPUTENODES = ""

 WARNINGCOUNT = ""

 ERRORCOUNT = ""

 INFORMATIONCOUNT = ""

 OPERATIONVARIABLECOUNT = "">

 <ATTRIBUTEFORMULAPARA

 NETOBJECTTYPE = "NETWORK"

 INCLUDESUBCATEGORIES = "0"

 RESULTATTRNAME = "CX_AV-SHARE"

 ONLYACTIVE = "0"

 FORMULA = "50"

 />

 </OPERATION>

 <OPERATION

 NO = "3"

 CODE = ""

 OPERATIONTYPE = "EditAttribute"

 ACTIVE = "1"

 COMMENT = "User input: threshold A for automated in-vehicle time perception [min]"

 EXECUTED = "0"

 STARTTIME = ""

 ENDTIME = ""

 DURATION = ""

 MESSAGES = ""

 RESULTMESSAGE = ""

 SUCCESS = "0"

 COMPUTENODES = ""

 WARNINGCOUNT = ""

 ERRORCOUNT = ""

 INFORMATIONCOUNT = ""

 OPERATIONVARIABLECOUNT = "">

 <ATTRIBUTEFORMULAPARA

 NETOBJECTTYPE = "NETWORK"

 INCLUDESUBCATEGORIES = "0"

 RESULTATTRNAME = "CX_THRESHOLD_IVT-PERCEPTION"

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 44 of 81 h2020-coexist.eu

 ONLYACTIVE = "0"

 FORMULA = "10"

 />

 </OPERATION>

 <OPERATION

 NO = "4"

 CODE = ""

 OPERATIONTYPE = "EditAttribute"

 ACTIVE = "1"

 COMMENT = "User input: factor A for automated in-vehicle time perception"

 EXECUTED = "0"

 STARTTIME = ""

 ENDTIME = ""

 DURATION = ""

 MESSAGES = ""

 RESULTMESSAGE = ""

 SUCCESS = "0"

 COMPUTENODE = ""

 WARNINGCOUNT = ""

 ERRORCOUNT = ""

 INFORMATIONCOUNT = ""

 OPERATIONVARIABLECOUNT = "">

 <ATTRIBUTEFORMULAPARA

 NETOBJECTTYPE = "NETWORK"

 INCLUDESUBCATEGORIES = "0"

 RESULTATTRNAME = "CX_IVT-PERCEPTION_FACTOR"

 ONLYACTIVE = "0"

 FORMULA = "0.8"

 />

 </OPERATION>

 </OPERATIONS>

</PROCEDURES>

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 45 of 81 h2020-coexist.eu

6.2.3 Script file: Formula matrices

The submitted file “CoEXist_Create_Formula_Matrices_-

_Extension_for_perceived_automated_travel_time_impacts.vbs” contains the following code:

Visum 18 or lower

'**

' This script creates formula matrices in Visum

' CoEXist - WP2 Macroscopic Modelling Tool

' USTUTT - University of Stuttgart

' October 2018

'**

' One call for creating each formula matrix

Call AddFormulaMat(-1, "CX_CV_DEMAND", "", 2, 3, "Matrix([CX_ID] = "+Chr(34)+"CX_CAR_DEMAND"+Chr(34)+")*(1-[CX_AV-

SHARE]/100)")

Call AddFormulaMat(-1, "CX_AV_DEMAND", "", 2, 3, "Matrix([CX_ID] = "+Chr(34)+"CX_CAR_DEMAND"+Chr(34)+")*[CX_AV-SHARE]/100")

Call AddFormulaMat(-1, "CX_TTC_NOT_AV-READY", "", 2, 4, "Matrix([CX_ID] = "+Chr(34)+"CX_TTC_CAR"+Chr(34)+")-Matrix([CX_ID] =

"+Chr(34)+"CX_TTC_AV-READY"+Chr(34)+")")

Call AddFormulaMat(-1, "CX_TTC_AV-READY_PERCEIVED", "", 2, 4, "IF(Matrix([CX_ID]="+Chr(34)+"CX_TTC_AV-READY"+Chr(34)+")<=[CX_THRESHOLD_IVT-

PERCEPTION_A],Matrix([CX_ID]="+ _

 Chr(34)+"CX_TTC_AV-READY"+Chr(34)+"),[CX_THRESHOLD_IVT-

PERCEPTION_A]+[CX_IVT-PERCEPTION_FACTOR]*(Matrix([CX_ID]="+ _

 Chr(34)+"CX_TTC_AV-READY"+Chr(34)+")-[CX_THRESHOLD_IVT-PERCEPTION_A]))")

Call AddFormulaMat(-1, "CX_TTC_CV_x_AV", "", 2, 4, "Matrix([CX_ID]="+Chr(34)+"CX_TTC_CAR"+Chr(34)+")*(1-[CX_AV-

SHARE]/100)+(Matrix([CX_ID]="+Chr(34)+"CX_TTC_NOT_AV-READY"+ _

 Chr(34)+")+Matrix([CX_ID]="+Chr(34)+"CX_TTC_AV-

READY_PERCEIVED"+Chr(34)+"))*([CX_AV-SHARE]/100)")

'**

' Commonly used values for MatrixType and ObjectTypeRef

' Member Value Summary

' MATRIXTYPE_ANY 2 Any matrix type

' MATRIXTYPE_DEMAND 3 Demand matrix

' MATRIXTYPE_SKIM 4 Skim matrix

' OBJECTTYPEREF_ZONE 2 Zones

' OBJECTTYPEREF_MAINZONE 3 Main zones

' OBJECTTYPEREF_STOPAREA 4 Stop areas

'**

' Creates a formula matrix on zone level

Function AddFormulaMat(MatNo, Code, Name, ObjectTypeRef, Matrixtype, Formula)

 If Name="" Then Name=Code

 On Error Resume Next

 Set x = Visum.Net.AddMatrixWithFormula (MatNo, Formula, ObjectTypeRef, Matrixtype)

 x.attvalue("Code") = Code

 x.attvalue("Name") = Name

 x.attvalue("CX_ID") = Code

End Function

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 46 of 81 h2020-coexist.eu

Visum 2020

'**

' This script creates formula matrices in Visum

' CoEXist - WP2 Macroscopic Modelling Tool

' USTUTT - University of Stuttgart

' February 2020

'**

' One call for creating each formula matrix

Call AddFormulaMat(-1, "CX_CV_DEMAND", "", 2, 3, "Matrix([CX_ID] = "+Chr(34)+"CX_CAR_DEMAND"+Chr(34)+")*(1-[CX_AV-

SHARE]/100)")

Call AddFormulaMat(-1, "CX_AV_DEMAND", "", 2, 3, "Matrix([CX_ID] = "+Chr(34)+"CX_CAR_DEMAND"+Chr(34)+")*[CX_AV-SHARE]/100")

Call AddFormulaMat(-1, "CX_TTC_NOT_AV-READY", "", 2, 4, "Matrix([CX_ID] = "+Chr(34)+"CX_TTC_CAR"+Chr(34)+")-Matrix([CX_ID] =

"+Chr(34)+"CX_TTC_AV-READY"+Chr(34)+")")

Call AddFormulaMat(-1, "CX_TTC_AV-READY_PERCEIVED", "", 2, 4, "IF(Matrix([CX_ID]="+Chr(34)+"CX_TTC_AV-READY"+Chr(34)+")<=[CX_THRESHOLD_IVT-

PERCEPTION],Matrix([CX_ID]="+ _

 Chr(34)+"CX_TTC_AV-READY"+Chr(34)+"),[CX_THRESHOLD_IVT-

PERCEPTION]+[CX_IVT-PERCEPTION_FACTOR]*(Matrix([CX_ID]="+ _

 Chr(34)+"CX_TTC_AV-READY"+Chr(34)+")-[CX_THRESHOLD_IVT-PERCEPTION]))")

Call AddFormulaMat(-1, "CX_TTC_CV_x_AV", "", 2, 4, "Matrix([CX_ID]="+Chr(34)+"CX_TTC_CAR"+Chr(34)+")*(1-[CX_AV-

SHARE]/100)+(Matrix([CX_ID]="+Chr(34)+"CX_TTC_NOT_AV-READY"+ _

 Chr(34)+")+Matrix([CX_ID]="+Chr(34)+"CX_TTC_AV-

READY_PERCEIVED"+Chr(34)+"))*([CX_AV-SHARE]/100)")

'**

' Commonly used values for MatrixType and ObjectTypeRef

' Member Value Summary

' MATRIXTYPE_ANY 2 Any matrix type

' MATRIXTYPE_DEMAND 3 Demand matrix

' MATRIXTYPE_SKIM 4 Skim matrix

' OBJECTTYPEREF_ZONE 2 Zones

' OBJECTTYPEREF_MAINZONE 3 Main zones

' OBJECTTYPEREF_STOPAREA 4 Stop areas

'**

' Creates a formula matrix on zone level

Function AddFormulaMat(MatNo, Code, Name, ObjectTypeRef, Matrixtype, Formula)

 If Name="" Then Name=Code

 On Error Resume Next

 Set x = Visum.Net.AddMatrixWithFormula (MatNo, Formula, ObjectTypeRef, Matrixtype)

 x.attvalue("Code") = Code

 x.attvalue("Name") = Name

 x.attvalue("CX_ID") = Code

End Function

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 47 of 81 h2020-coexist.eu

6.3 Tool: Ridematching

6.3.1 Script file: rs_match_all_to_all.vbs

' **************************

' ps = pathset

' no = number

' vol = volumn

' cap = capacity

' net = network

ps_no = Visum.Net.PathSets.ItemByKey(2).Paths.GetMultiAttValues("No", False)

ps_from_zone_no = Visum.Net.PathSets.ItemByKey(2).Paths.GetMultiAttValues("FromZoneNo", False)

ps_to_zone_no = Visum.Net.PathSets.ItemByKey(2).Paths.GetMultiAttValues("ToZoneNo", False)

ps_sequence_of_zones = Visum.Net.PathSets.ItemByKey(2).Paths.GetMultiAttValues("rs_zone_sequence", False)

ps_vol = Visum.Net.PathSets.ItemByKey(2).Paths.GetMultiAttValues("Vol", False)

ps_matched_path_id = Visum.Net.PathSets.ItemByKey(2).Paths.GetMultiAttValues("rs_matched_path_id", False)

ps_replaced_path_id = Visum.Net.PathSets.ItemByKey(2).Paths.GetMultiAttValues("rs_replaced_path_id", False)

ps_cap = Visum.Net.PathSets.ItemByKey(2).Paths.GetMultiAttValues("rs_capacity", False)

net_veh_cap = Visum.Net.AttValue("Vehicle_Capacity")

For i = 0 To UBound(ps_no) ' loop: i = Supplier

 For j = 0 To UBound(ps_no) ' loop: j = Demander ' exit: RS_BefPers = 0

 ' check: fromzone in sequence of zones and

 ' tozone in sequence of zones and

 ' fromzone before tozone in sequence of zones

 If InStr(1, ps_sequence_of_zones(i, 1), ps_from_zone_no(j, 1)) > 0 And _

 InStr(1, ps_sequence_of_zones(i, 1), ps_to_zone_no(j, 1)) > 0 And _

 InStr(1, ps_sequence_of_zones(i, 1), ps_from_zone_no(j, 1)) <= _

 InStr(1, ps_sequence_of_zones(i, 1), ps_to_zone_no(j, 1)) And _

 ps_vol(j, 1) <> 0 And _

 ps_cap(i, 1) > 0 And _

 i <> j Then

 If ps_cap(i, 1) >= ps_vol(j, 1) Then

 ps_cap(i, 1) = ps_cap(i, 1) - ps_vol(j, 1)

 ps_cap(j, 1) = 0

 ps_vol(i, 1) = ps_vol(i, 1) + ps_vol(j, 1)

 ps_matched_path_id(i, 1) = ps_matched_path_id(i, 1) & "," & ps_no(j, 1) & "(" & ps_vol(j, 1) & ")"

 ps_replaced_path_id(j, 1) = ps_replaced_path_id(j, 1) & "," & ps_no(i, 1) & "(" & ps_vol(j, 1) & ")"

 ps_vol(j, 1) = 0

 Else

 ps_vol(i, 1) = ps_vol(i, 1) + ps_cap(i, 1)

 ps_vol(j, 1) = ps_vol(j, 1) - ps_cap(i, 1)

 ps_matched_path_id(i, 1) = ps_matched_path_id(i, 1) & "," & ps_no(j, 1) & "(" & ps_cap(i, 1) & ")"

 ps_replaced_path_id(j, 1) = ps_replaced_path_id(j, 1) & "," & ps_no(i, 1) & "(" & ps_cap(i, 1) & ")"

 ps_cap(i, 1) = 0

 ps_cap(j, 1) = Round(ps_vol(j, 1) / net_veh_cap + 0.5) * net_veh_cap - ps_vol(j, 1)

 End If

 End If

 Next

Next

' write information back to Visum

Call Visum.Net.PathSets.ItemByKey(2).Paths.SetMultiAttValues("rs_satisfied_demand", ps_vol)

Call Visum.Net.PathSets.ItemByKey(2).Paths.SetMultiAttValues("rs_matched_path_id", ps_matched_path_id)

Call Visum.Net.PathSets.ItemByKey(2).Paths.SetMultiAttValues("rs_replaced_path_id", ps_replaced_path_id)

Call Visum.Net.PathSets.ItemByKey(2).Paths.SetMultiAttValues("rs_capacity", ps_cap)

6.3.2 Script file: rs_reduce_zone_sequence.vbs

' **************************

PathSetNo = Visum.Net.AttValue("NoPathSet")

sequence_of_zones = Visum.Net.PathSets.ItemByKey(PathSetNo).Paths.GetMultiAttValues("Concatenate:Nodes\node_intersect_with_zones", false)

from_zone_no = Visum.Net.PathSets.ItemByKey(PathSetNo).Paths.GetMultiAttValues("FromZoneNo", false)

to_zone_no = Visum.Net.PathSets.ItemByKey(PathSetNo).Paths.GetMultiAttValues("ToZoneNo", false)

For i = 0 To UBound(sequence_of_zones)

 sequence_of_zones(i, 1) = "," & from_zone_no(i, 1) & "," & sequence_of_zones(i, 1) & "," & to_zone_no(i, 1) & "," ' add: zone origin and

destination to ensure origin and destination are part of the sequence

 sequence_of_zones(i, 1) = zone_sequence(sequence_of_zones(i, 1)) ' call: function to reduce the zone sequence, keep necessary information

about the route

Next

call Visum.Net.PathSets.ItemByKey(PathSetNo).Paths.SetMultiAttValues("rs_zone_sequence", sequence_of_zones) ' return: reduced zone sequence

to Visum

' uniques the sequence of (main)zones by keeping the order

Function zone_sequence(vSeq)

 vSeq = Replace(vSeq, ".", "") ' replace string "." by ""

 vSeq = Split(vSeq, ",") ' split string by ","

 For j = 0 To UBound(vSeq) - 1

 If vSeq(j) <> vSeq(j + 1) And vSeq(j) <> "" Then

 zone_sequence = zone_sequence & "," & vSeq(j) ' if zone exist then consider otherwise continue with next entry

 End If

 Next

 If Len(zone_sequence) > 0 Then zone_sequence = Right(zone_sequence, Len(zone_sequence) - 1) ' remove first "," in string zone_sequence

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 48 of 81 h2020-coexist.eu

 zone_sequence = zone_sequence & ","

 vSeq = Split(zone_sequence, ",")

 zone_sequence = ""

 For j = 0 To UBound(vSeq) - 1

 If vSeq(j) <> vSeq(j + 1) Then

 zone_sequence = zone_sequence & "," & vSeq(j) ' if zone exist then consider otherwise continue with next entry

 End If

 Next

 If Len(zone_sequence) > 0 Then zone_sequence = Right(zone_sequence, Len(zone_sequence) - 1) ' remove first "," in string zone_sequence

End Function

6.3.3 Script file: rs_write_matrix_route_match.vbs

' **************************

zone_no = Visum.Net.Zones.GetMultiAttValues("NO")

ps_fromzoneno = Visum.Net.PathSets.ItemByKey(2).Paths.GetMultiAttValues("FROMZONENO", True)

ps_tozoneno = Visum.Net.PathSets.ItemByKey(2).Paths.GetMultiAttValues("TOZONENO", True)

ps_vol = Visum.Net.PathSets.ItemByKey(2).Paths.GetMultiAttValues("rs_satisfied_demand", True)

no_vehtrips_route_match = 13

veh_capacity = Visum.Net.AttValue("Vehicle_Capacity")

non_integer_vehicle_trips = Visum.Net.AttValue("non_integer_vehicle_trips")

Visum.Net.Matrices.ItemByKey(no_vehtrips_route_match).Init

matrix_values = Visum.Net.Matrices.ItemByKey(no_vehtrips_route_match).GetValues

For i = 0 To UBound(ps_fromzoneno)

 zone_from_index = bin_search(zone_no, ps_fromzoneno(i, 1))

 zone_to_index = bin_search(zone_no, ps_tozoneno(i, 1))

 If non_integer_vehicle_trips = False Then

 matrix_values(zone_from_index, zone_to_index) = ps_vol(i, 1) / veh_capacity

 Else

 matrix_values(zone_from_index, zone_to_index) = 1

 End If

Next

Visum.Net.Matrices.ItemByKey(no_vehtrips_route_match).SetValues matrix_values

' **************************

'binary search algorithm

Function bin_search(arr, srch)

 first = LBound(arr)

 last = UBound(arr)

 Do Until cancel = -1 And first <= last

 middle = (first + last) \ 2

 If arr(middle, 1) = srch Then

 cancel = middle

 Exit Do

 Else

 If srch > arr(middle, 1) Then

 first = middle + 1

 Else

 last = middle - 1

 End If

 End If

 Loop

 bin_search = middle

End Function

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 49 of 81 h2020-coexist.eu

6.4 Report on Milestone 16 “Assumptions for macroscopic modelling”

Description and context

Work package 2 mainly deals with the development of the microscopic and macroscopic modelling tools

to enable them to integrate the characteristics of automated vehicles (AV). These tools are required within

the project to model, simulate and evaluate various scenarios and finally to help answer the questions

from the partner cities about possible impacts of AV. Furthermore, the extended modelling tools will

empower users and researchers to analyse and evaluate their own application cases with AV in the future.

Milestone 16 “Assumptions for the macroscopic modelling tool defined” builds upon examinations with the

AV-ready microscopic simulation tool. According to the Grant Agreement, it is defined as follows:

“The result from the validated AV-ready microsimulation model (D2.4) will be a base for creating a first set

of assumptions for the supply side of the macroscopic travel demand model by updating network capacities

and capacity restraint functions (links and nodes). Means of verification: Report on assumption definitions.”

Hence, Milestone 16 serves as a crucial input for the development of the AV-ready macroscopic modelling

tool, namely Task 2.4, which is described as follows:

The result from the validated AV-ready microsimulation model (D2.4) will be a base for creating

assumptions for the supply-side of the macroscopic travel demand model by updating network capacities

and capacity restraint functions (links and nodes). PTV will provide results from microscopic simulations

for USTUTT in form of fundamental diagrams of the traffic flow created for selected networks.

USTUTT uses outputs from the microscopic simulations and the real-world experiments to estimate

volume delay functions for links and nodes. In this way, the results are generalised for the application in

macroscopic travel demand models. CoEXist will deliver recommendations for capacities, free flow speeds

and volume delay functions for links and nodes. At the level of nodes, VISUM provides a method for an

intersection capacity analysis (ICA), which computes delay times based on the Highway Capacity Manual

(HCM). The parameters of this method (e.g. saturation flow, gap times) will also be adjusted for AVs.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 50 of 81 h2020-coexist.eu

Methodology on macroscopic side

Definition of Capacity and Performance

The American Highway Capacity Manual (HCM, 2010) defines road capacity as the maximum sustainable

hourly flow rate at which persons or vehicles reasonably can be expected to traverse a point or a uniform

section of a lane or roadway during a given time period under prevailing roadway, environmental, traffic

and control conditions. This definition treats capacity more or less as a constant value. Brilon et al.1 indicate

that this assumption is not appropriate as observations show, that the maximum traffic throughput varies

even under constant external conditions. They introduce the concept of stochastic capacities to replicate

the relationship between traffic flows and traffic breakdown in a better way. Lohmiller2 shows that the

throughput on a motorway depends on the traffic composition, i.e. the driver population influences the

quality of the traffic flow. This leads to two interpretations for the relationship between demand, capacity

and performance (=travel time):

 Variable (or stochastic) capacity: The performance depends on random capacity values.

 Variable demand composition: The performance depends on the ability of a given demand

composition (driver / vehicle population) to use a given (constant) capacity

 “better drivers use the capacity more efficiently”.

This specification uses the following terms:

 Performance is a measure to quantify the functioning of a road facility. Performance can be measured

by the indicator delay time per vehicle.

 Capacity is a constant value describing the typical throughput of vehicles for a reference vehicle type.

Conventional passenger cars define the reference vehicle type. Thus, a capacity value describes the

throughput of a demand with 100% conventional passenger cars and 0% trucks.

 Traffic composition defines a certain combination of vehicle types (conventional and automated

vehicles, passenger cars and trucks).

1 Brilon, W., Geistefeldt, J., & Zurlinden, H. (2007). Implementing the concept of reliability for highway capacity analysis. Transportation Research Record: Journal of
the Transportation Research Board, (2027), 1-8.
2 Lohmiller, J. (2014). Qualität des Verkehrsablaufs auf Netzabschnitten von Autobahnen: Bewertung unter Berücksichtigung der Zuverlässigkeit und Analyse von
Einflussfaktoren.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 51 of 81 h2020-coexist.eu

Capacity and demand in passenger car units

Specification

Macroscopic route choice and assignment models for private transport apply volume-delay functions

(VDF) to determine travel time in the road network. For links, the travel time is computed by multiplying

the free flow travel time by a factor that is determined by a VDF as shown in equation (1). For nodes, a

delay time is added to the free flow travel time as shown in equation (2). Equation (3) shows a simple

example for a VDF suitable for links. The VDF-factor depends on the volume / capacity ratio, i.e. the

saturation rate sx of a network element. The relationship between volume and capacity is described in

equation (4). It assumes a constant capacity and a volume, which considers the vehicle composition. The

vehicle composition is described by passenger car units (PCU). Each vehicle type has a specific PCU-

factor converting the vehicle volume into a volume equivalent to passenger cars. This concept of PCU is

a common concept in macroscopic assignment models. It is mainly used to convert trucks into PCU. This

specification suggests extending the PCU concept to AV. This extension can come in two forms making

different assumptions:

Assumption 1: The performance of a network element changes proportionally to the share of AV

This assumption implies a linear relationship between vehicle-type and performance. The impact of one

single AV depends on the type of road facility, but not on the penetration rate.

PCU-factor: The PCU-factor must be extended to distinguish road and intersection types (motorway /

urban road, grade separated / at-grade intersections, signalised / unsignalised intersections). The PCU-

factor is a constant value, which remains fixed during an assignment.

Assumption 2: The performance of a network element changes disproportionately to the share of

AV

This assumption includes a nonlinear relationship between vehicle-type and performance. The impact of

one single AV depends on the type of road facility and on the penetration rate. In case of a low penetration

rate the impact of a single AV is smaller than in cases with a higher one.

PCU-factor: The PCU-factor must be extended to distinguish road and intersection types, but also the

share of AV. This leads to a dynamic PCU-factor, which is adapted during an assignment. Equation (5)

shows a possible function for a dynamic PCU-factor.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 52 of 81 h2020-coexist.eu

 free

s Link s s st x t VDF x
(1)

 free

s Node s s st x t VDF x
(2)

 1s sVDF x x
(3)

,

,max

,

current approach

linear impact of AVwhere

 nonlinear impact AV

PCU

is i

PCUi VehType

s is

s PCU

s i

f fq f

f fx
q

f f n

 (4)

 , , ,

, , , ,()PCU PCU Max PCU Max PCU Min

s i AV AV s i AV AV s i AV s i AVf p f p f f (5)

where

PCU

if passenger car units of vehicle type i [PCU/veh]

,

PCU

s if passenger car units of vehicle type i on supply element type s [PCU/veh]

, ()PCU

s i AVf p passenger car unit function dependent on the share of AV pAV [PCU/veh]

,

,

PCU Max

s i AVf
passenger car units of vehicle type AV on supply element type s for an AV-

share of 0% (e.g. = 1.0)

,

,

PCU Min

s i AVf
passenger car units of vehicle type AV on supply element type s for an AV-

share of 100% (e.g. = 0.7)

,s iq volume of vehicle type i on supply element s [veh/h]

max

sq capacity of supply element s [PCU/h]

 s st x travel time on supply element s at saturation rate sx [sec]

free

st travel time on supply element s at saturation rate 0sx [sec]

VehType vehicle types: conventional car, AV, HGV

 sVDF x volume-delay function

sx saturation rate (volume/capacity ratio) on supply element s [-]

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 53 of 81 h2020-coexist.eu

Application example

The following figure shows the impact of linear and nonlinear PCU-factors on travel time for the same

penetration rates of AV. In the nonlinear case, AV have a smaller impact at all penetration rates below

100% compared to the linear case.

Figure 10: Impact of linear and non-linear PCU-factors on travel time for the same penetration rates of AV

Assumptions for this example:

Linear case: , 0.7PCU

s i AVf

Nonlinear case:

 ,

,

() 1.0 1.0 0.7

() [0.7,1.0]

PCU

s i AV AV AV

PCU

s i AV AV

f p p

f p

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 54 of 81 h2020-coexist.eu

Capacity and demand in vehicle units

Specification

Wagner (2016, 2017)3 introduced an approach to incorporate effects of AV on performance by adapting

the capacities of road facilities. It determines capacity depending on vehicle headways, vehicle lengths,

share of AV and speed.

Equation (9) is applied to calculate the mean net time headway over all vehicles. It is simply based on the

probability of specific vehicle types succeeding others, which in turn depends on the share of this vehicle

type (e.g. 80% car, 20% HDV) and the penetration rate of AV of this type (e.g. 60% of cars are AV, 70%

of HDV are AV). Then the mean gross space headway required by an average vehicle is determined from

the net time headway, the speed and the mean vehicle length (see equation (10)) of the vehicle

composition on the considered supply element. This leads to the vehicle density shown in equation (8).

Multiplying the vehicle density with the speed determines the capacity as shown in equation (7), leading

to the saturation in equation (6), which serves as an input for volume delay functions. Since the capacity

depends on the share of AV, it must be updated during an assignment.

The (net) time headways between vehicle types have to be derived from the microscopic traffic flow

simulations.

max

s
s

s

q
x

q
 (6)

max 3600 ()s s s sq v k v
(7)

,

1
()

()
s s mean mean

s s s AV s

k v
v t p l

 (8)

, , , , , , ,

, , , , ,

, , , , ,

, , , , ,

((1)(1)

(1)

(1)

) [,]

mean

s s i s j s AV i s AV j ij CC

i j

s AV i s AV j ij CA

s AV i s AV j ij AC

s AV i s AV j ij AA

t p p p p t

p p t

p p t

p p t i j VehType

 (9)

,

,

[]
s i i

mean i
s

s i

i

q l

l i VehType
q

 (10)

3 Wagner, P., 2016. Traffic Control and Traffic Management in a Transportation System with Autonomous Vehicles. In Maurer, M., Gerdes, J., Lenz, B., Winner, H.
(Eds.) Autonomous Driving: Technical, Legal and Social Aspects, Springer, 2016, 301-316
Wagner, P., 2017. Autonomer Verkehr und die Kapazität von Straßen. Automatisiertes Fahren, FSV Schriftenreihe 017 | 2017, 23-26

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 55 of 81 h2020-coexist.eu

where

sx saturation of supply element s [-]

sq traffic volume on supply element s [veh/h]
max

sq
 capacity of supply element s [veh/h]

sv speed limit on supply element s [m/sec]

()s sk v traffic density for speed sv on supply element s [veh/m]

mean

st average net time headway between vehicles on supply element s [sec]
mean

sl mean vehicle length on supply element s [m]

,s ip share of vehicle type i on supply element s [-]

, ,s AV ip AV share of vehicle type i on supply element s [-]

,ij CCt net time headway between CV of type i and CV of type j [sec]

,ij CAt net time headway between CV of type i and AV of type j [sec]

,ij ACt net time headway between AV of type i and CV of type j [sec]

,ij AAt net time headway between AV of type i and AV of type j [sec]

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 56 of 81 h2020-coexist.eu

Application example

Figure 11 shows the correlation between the share of automated vehicles, the permitted speed and the

resulting capacity for a road section with one lane. With the assumptions of decreased time headways

between two AV in comparison to the usual gap between conventional vehicles, the capacity increases

with higher shares of AV. It also grows with higher speed, although density decreases simultaneously.

This can be explained with the average vehicle length, which reduces the density to such an extent, that

the speed always predominates its reciprocal within the formula for vehicle density (see equations (7)

and (8)). For a vehicle length of zero, capacity does not depend on speed anymore.

Figure 11: Capacity depending on AV share and speed for a one-lane road section

Assumptions for this example:

 100% cars one vehicle type

 Net time headways: 1ACt s ; 2CC CA AC othert t t t s

 Equation (9) simplifies to:
2 2

, , ,() (1)mean

s s AV s AV AA s AV othert p p t p t

 Average vehicle length including standstill distance: 7mean

sl m

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 57 of 81 h2020-coexist.eu

Methodology on microscopic side

Assumptions on driving behaviour

For the simulations we used three different driving behaviour types:

 Cautious (AV1), the vehicle respects the road-code and always adopts a safe behaviour. The brick

wall distance is always respected, unsignalized intersections and lane changes are possible but the

vehicle will keep quite large gaps.

 Normal (AV2), very similar to a human driver with the additional capacity of measuring distances

and speeds of the surrounding vehicles thanks to its sensor suite.

 All knowing (AV3), with perfect perception and prediction leading mainly to smaller gaps for all

manoeuvres and situations. A kind of cooperative behaviour is expected.

The driving logics have been defined within the CoEXist project, for additional details see the driving

logic paper. The “rail safe” driving logic mentioned in deliverable D2.3 was not tested, because of very

special nature and very special use (mostly closed environments).

Table 5 Settings used for new features

 Used setting for new features

driving logic
enforce absolute
breaking distance

(EABK)

use implicit
stochastics

number of
interaction vehicles
(interaction objects)

increased desired
acceleration

Cautious (AV1) ON OFF 1 (2) 100 %

Normal (AV2) OFF OFF 1 (2) 105 %

all knowing (AV3) OFF OFF 8 (10) 110 %

conventional OFF ON 99 (2) 100 %

For conventional vehicles we used the values defined by research project at KIT for standard

German network components (like merging or diverging areas) which where calibrated to be in line

with the German highway capacity manual (HBS). Driving parameter values for automated vehicles

are based on CoEXist deliverable D2.3.

Following behaviour

These driving behaviour parameters have been used for the following behaviour. Chosen values are

based on the data evaluation results from the test-track, results from the co-simulations and

assumptions.

Table 6 Settings for following behaviour parameters for AV’s

 driving logic

 model Parameter cautious normal all knowing

fo
llo

w
in

g
b

eh
av

io
u

r
W

ie
d

em
a

n
n

 9
9

 CC0 – Standstill distance (m) 1.5 1.5 1

CC1 – Spacing time (s) 1.5 0.9 0.7

CC2 – Following variation (m) 0 0 0

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 58 of 81 h2020-coexist.eu

CC3 – Threshold for entering “following” (s) -10 -8 -6

CC4 – Negative „following“ threshold (m/s) -0.1 -0.1 -0.1

CC5 – Positive „following“ threshold (m/s) 0.1 0.1 0.1

CC6 – Speed dependency of oscillation (10-4 rad/s) 0 0 0

CC7 – Oscillation acceleration (m/s2) 0.1 0.1 0.1

CC8 – Standstill acceleration (m/s2) 3 3.5 4

CC9 – Acceleration at 80 km/h (m/s2) 1.2 1.5 2

Lane changing behaviour

The appropriate values for lane change parameters for three driving logics have been set based on

assumptions about the automated vehicles because of lack of empirical data (only COEXist data for

following behaviour are available). These driving behaviour parameters have been used for lane

changing behaviour:

Table 7 Used lane change behaviour parameters for AV’s

 driving logic

 cautious normal all knowing

parameter for necessary lane change own trailing vehicle own trailing vehicle own trailing vehicle

maximum deceleration -3.5 -2.5 -4 -3 -4 -4

 - 1 m/s per distance 80 80 100 100 100 100

accepted deceleration -1 -1 -1 -1 -1 -1.5

Table 8 Used settings for lane changing behaviour functionalities

 driving logic

behavioral functionality cautious normal all knowing

Advanced merging on on on

Cooperative lane change off on on

Safety distance reduction factor 1 0.6 0.75

min. headway (front/rear) 1 0.5 0.5

max. deceleration for cooperative braking -2.5 -3 -6

Besides parameter mentioned above in some networks with multilane links the lane change is prohibited

in certain direction (to left or right lane) in order to be in lane with real driving behaviour and the German

highway capacity manual. For details, open the network and have a look into link dialog, tab. “Lanes”.

Lateral behaviour

No changes have been realized in lateral behaviour (within the lane), basic Vissim’s settings is used

(position “middle of lane”).

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 59 of 81 h2020-coexist.eu

Signal control behaviour

Table 9 Used settings for signal control behaviour

 driving logic
attribute cautious normal all knowing

behavior at amber signal continuous check one decision one decision

behavior at red/amber signal stop stop stop

reaction time distribution - - -

reduced safety distance factor 1 1 1

reduced safety start upstream of stop line 100 100 100

reduced safety end upstream of stop line 100 100 100

Investigated network sections

All networks are equipped with sets of data collection points to measure the number of vehicles going through
during a specific time interval. Data collection points are placed everywhere where an individual value or a flow
change is possible. Results have been collected as raw data (*.mer files) and evaluated and aggregated using
python scripts after the simulation.

Desired speed of vehicles entering the network is set as a distribution, which has a larger span for conventional
vehicles and very small span (+- 2 km/h) for automated vehicle. It is assumed, that the automated vehicles control
the speed in a deterministic way and obey the speed limits.

“Lane change“ attributes of connectors are identical for all vehicles. That means, that all vehicle classes get the
information about necessary lane change further downstream at the same location (cross section). From that point,
vehicles start to try to make the lane change if needed because of the route (in order to reach the upstream
connector).

These eight networks have been used for simulations:

1) Off ramp & on ramp with 3 lanes on the main freeway

Desired speed of conventional vehicles entering the network on the main link is set to 140 km/m with a
wider spread between 80 and 205 km/h. Automated vehicles use the desired speed 130 +-2 km/h.

Relative share of demand between network elements:

main link through 4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 60 of 81 h2020-coexist.eu

off ramp 1

on ramp 1

2) Off ramp & on ramp with 2 lanes on the main freeway

Desired speed of conventional vehicles entering the network on the main link is set to 140 km/m with a
wider spread between 80 and 205 km/h. Automated vehicles use the desired speed 130 +-2 km/h.

Relative share of demand between network elements:

main link through 4

off ramp 1

on ramp 1

3) Lane number reduction from 3 to 2 lane

A three-lane link is reduced to 2-lane link, maximum flow is measured.

4) Lane number reduction from 2 to 1 lanes

A two-lane link is reduced to 1-lane link, maximum flow is measured.

5) Saturation flow on one-lane link with signal

Results provide information for the calculation of the saturation flow. The green time used in the model was
set to 10, 20 or 30 seconds. First three links reflects the situation for direction “through“, without a speed
limitation. Second three links reflect the situation when the speed of vehicles is limited e.g. through
curvature when turning left or right.

lane reduction

lane reduction

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 61 of 81 h2020-coexist.eu

6) Simple one-lane link

This network provides results for theoretical capacity on one lane link under ideal conditions without
influence of intersections, parking manoeuvres or other sources of disturbance. The resulting maximum
flow depends on speed and settings for following behaviour.

7) Simple crossing and simple merging conflict

Results from this network provide information about the capacity of a simple conflict area for relative
comparison of different driving logics and penetration rates.

8) Influence of gradient (uphill slopes)

Results from this network are showing the impact of gradient. The value of gradient impacts the driving
behaviour in Vissim via the maximum acceleration and maximum deceleration on a link:

 by -0.1 m/s² per gradient percent incline. The maximum accelerating power decreases when the
deceleration power increases.

 by 0.1 m/s² per gradient percent downgrade. The accelerating power increases when the
deceleration power decreases.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 62 of 81 h2020-coexist.eu

Methodology

For the described networks, several different scenarios were simulated. In the scenarios, we use the

different AV driving logics as described in chapter 3.1 and additionally varied the penetration rate and the

demand. The penetration varied in 10% steps from 0% to 100% and for varying the demand, we applied

a factor between 0.1 and 3.6 in 0.5 steps. See the different values in the next table.

All possible combination between network, AV driving logic, penetration rate and demand factor were

simulated 10 times with different random seeds, making a total of 8 * 3 * 11 * 7 * 10 = 18.480 simulation

runs. Note: A combination of different AV driving logics, e.g. 20% cautious and 80 % all-knowing, has not

been simulated. In each simulation we use one specific AV driving logic with a specific penetration rate,

e.g. 20 % cautious, and the other 80 % are always conventional vehicles. The demand factor was

applied to all vehicle inputs in the network to get results with different volumes, for example free-flow,

saturated and over-saturated conditions. The base demand in the network was set in a way that a level

of service C/D was achieved, which means an undersaturated condition.

Network
AV driving

logic

Penetration

rate

Demand

factor

Off ramp & on ramp with 3 lanes on the main freeway cautious 0 % 0.1

Off ramp & on ramp with 2 lanes on the main freeway normal 10 % 0.6

Lane number reduction from 3 to 2 lane all knowing 20 % 1.1

Lane number reduction from 2 to 1 lanes 30 % 1.6

Saturation flow on one-lane link with signal 40 % 2.1

Simple one-lane link 50 % 2.6

Simple crossing and simple merging conflict 60 % 3.1

Influence of gradient (uphill slopes) 70 %

 80 %

 90 %

 100 %

From the simulation we collected traffic counts and average speeds at cross sections. We collected the

results over 30 minutes of simulation time after a 5-minute warmup period and aggregated the results in

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 63 of 81 h2020-coexist.eu

5 minutes time intervals. With this data we describe the fundamental diagram which is expressed by the

functional relation by van Aerde4. With this functional expression of the fundamental diagram, we can

compare different scenarios, mainly the different penetration rate, to each other. The functional relations

is expressed in the density – speed relation:

𝑘(𝑣) =
1

𝑐1 +
𝑐2

𝑣0 − 𝑣
+ 𝑐3 ∙ 𝑣

with

𝑘 density [veh/km]

𝑣 speed [km/h]

𝑣0 free-flow speed [km/h]

𝑐1 headway parameter [km/veh]

𝑐2 parameter for difference to free-flow speed [km²/(h*veh)]

𝑐3 speed parameter[1/(h*veh)]

One van Aerde parameter set was determined for a network – AV driving logic – penetration rate

combination. All different demand scenarios plus the results from the different random seeds where used

for the parameter estimation of one van Aerde function. The density was calculated by k = q/v, where k

is the density [veh/km], q is the volume [veh/h] and v is the speed [km/h].

To obtain a reasonable parameter estimation, we averaged speeds within different density intervals of 2

veh/km length. This result to only one datapoint for every 2 veh/km density intervals. Only with those

data points we estimated the parameters of the van Aerde function. Additionally, a datapoint was added

at speed v = 0 km/h and density k = number of lanes * 125 veh/km – this represents one vehicle every

8 m, because there were no scenarios where we had maximum density (at speed 0 km/h).

Results

Important note: curve fitting and van Aerde diagrams are provided for almost all networks and

data collection points for an overview, but only few of them are relevant for further consideration

– these should be checked on curve fit quality and adjusted manually if needed.

1) Off ramp & on ramp with 3 lanes on the main freeway (A1-n3 SuP plus KAL_E1-n3_94789)

Desired speed of conventional vehicles entering the network on the main link is set to 140 km/m with a
wider spread between 80 and 205 km/h. Automated vehicles use the desired speed 130 +-2 km/h.

4 VAN AERDE, M. (1995): A single regime speed-flow-density relationship for freeways and arterials, Proceedings
of the 74th TRB annual meeting. Washington D. C..

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 64 of 81 h2020-coexist.eu

Pictures showing 95% quantile results for data collection groups:

1,2,3

5,6,7

4
,3

12,13,14 9,10,11

8

15,16,17

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 65 of 81 h2020-coexist.eu

,

Table 10 Comments to 95%-Quantile results

DCID Comments

general

The small difference between AV2 and AV3 in lower penetration rates is caused by almost
the same safety distance for lane change. The lane change behaviour is important in this
network because of diverging and merging area. Reduced safety factor for AV2 is set to 0,6
and for AV3 to 0,75 (0,6 x 0,9 vs. 0,75 x 0,7 = 0,54 vs 0,525 for the speed dependent part of
the safety distance). Lower values for safety reduction factor for AV3 could lead to crashes
in the simulation (vehicle overlaps) with existing following and lane changing model in
Vissim.

[1,2,3]

Before the diverging area

AV1 (cautious) shows decreasing throughput with growing penetration rate, especially from
30 %. AV2 and AV3 show the practically the same growing values up to penetration rate
50 %. Above the penetration rate 50 %, the AV3 values grow faster than AV2.

[4]

Deceleration lane at the end of the diverging area

AV1 (cautious) shows decreasing throughput with growing penetration rate. AV2 and AV3
show the practically the same growing values up to penetration rate
30 %. Above the penetration rate 30 %, the AV3 values grow faster than AV2.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 66 of 81 h2020-coexist.eu

[5,6,7]

Through lanes at the end of the diverging area

AV1 (cautious) shows decreasing throughput with growing penetration rate, especially from
40 %. AV2 and AV3 show the practically the same growing values up to penetration rate
50 %. Above the penetration rate 50 %, the AV3 values grow faster than AV2.

[8]

Merging lane at the beginning of the merging area

This data collection point is placed on the on-ramp in front of the merging area. AV2 seems
to be the winner in sense of merging throughput and indicates growing values with growing
penetration rate. AV1 and AV3 values decrease with penetration rate. The AV3 allows lower
throughput values as AV2 for the merging flow, but higher values for the main flow and also
for the sum of main flow and merging flow (see DCID [9,10,11] and [12,13,14] comments).

[9,10,11]

Main flow lanes at the beginning of the merging area

AV1 (cautious) shows decreasing throughput with growing penetration rate, especially from
40 %. AV2 and AV3 show the practically the same growing values up to penetration rate
50 %. Above the penetration rate 50 %, the AV3 values grow faster than AV2.

[12,13,14]

Flow after the merging area

AV1 (cautious) shows decreasing throughput with growing penetration rate. AV2 and AV3
show the practically the same growing values up to penetration rate 40 %. Above the
penetration rate 50 %, the AV3 values grow faster than AV2.

[15,16,17]

Flow between the diverging and merging area

AV1 (cautious) shows decreasing throughput with growing penetration rate, especially from
40 %. AV2 and AV3 show the practically the same growing values up to penetration rate
50 %. Above the penetration rate 50 %, the AV3 values grow faster than AV2.

Figure 12 Curve-fitting example: penetration rate 20%, DCID [1,2,3]. See the attachment for other penetration

rates and data collection points.

AV1 AV2 AV3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 67 of 81 h2020-coexist.eu

Figure 13 Van Aerde diagrams for DCID [12,13,14], all penetration rates. See the attachments for other DCIDs.

2) Off ramp & on ramp with 2 lanes on the main freeway (E1-2 plus A1-n2_11998.inpx)

Desired speed of conventional vehicles entering the network on the main link is set to 140 km/m with a
wider spread between 80 and 205 km/h. Automated vehicles use the desired speed 130 +-2 km/h.

Pictures showing 95% quantile results for data collection groups:

4,5
1,2

3

7,8 11,12

6

9,10

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 68 of 81 h2020-coexist.eu

 Table 11 Comments to 95%-Quantile results

DCID Comments

General

The similarity between AV2 and is AV3 is correct because the network has merging and
diverging areas = lane changes are necessary, there are only 2 through lanes and the
safety distance for lane changing is almost the same for both driving behaviors. Better
performance of AV3 would be possible only with some external control algorithm leading to
perfect cooperation (such scenario is more realistic for full penetration rate).

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 69 of 81 h2020-coexist.eu

[1,2]

Main flow (through lanes) before the diverging area.

The throughput values for cautious vehicles with penetration rate 0-50 % oscillates around
the same value and later declines with growing penetration rate. AV2 and AV3 show growth
with growing penetration rate and very similar values. The higher values of AV3 from
previous network with 3 through-lanes are not present here, because the disturbances in
the diverging and merging area have a strong impact on both lanes.

[3]

Off-ramp lane at the end of the diverging area

The throughput values for cautious vehicles with penetration rate 0-50 % oscillates around
the same value and later declines with growing penetration rate. AV2 and AV3 show growth
with growing penetration rate and very similar values.

[4,5]

Through lanes at the end of the diverging area

The throughput values for cautious vehicles with penetration rate 0-50 % oscillates around
the same value and later declines with growing penetration rate. AV2 and AV3 show growth
with growing penetration rate and very similar values.

[6]

Merging lane at the beginning of the merging area

The merging flow declines with growing penetration rates up to 50 %. Higher penetration
rates show growing throughput. AV2 and AV3 values are very similar except of full
penetration, where AV3 leads.

[7,8]

Through lanes at the beginning of the merging area

The throughput values for cautious vehicles with penetration rate 0-50 % grows slightly and
later (pen. rate > 50 %) declines significantly with growing penetration rate. AV2 and AV3
show growth with growing penetration rate and very similar values.

[9,10]

Through lanes after the merging area

The throughput values for cautious vehicles decline with growing penetration rate. AV2 and
AV3 show growth with growing penetration rate and very similar values, except the highest
penetration rates, where the AV3 shows higher values.

[11,12]

Through lane between the diverging and merging area

The throughput values for cautious vehicles with penetration rate 0-50 % grows slightly and
later (pen. rate > 50 %) declines significantly with growing penetration rate. AV2 and AV3
show growth with growing penetration rate and very similar values except of full penetration,
where AV3 shows higher value.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 70 of 81 h2020-coexist.eu

Figure 14 Curve-fitting example: penetration rate 40%, DCID [1,2]. See the attachment for other penetration
rates and data collection points.

Figure 15 Van Aerde diagrams for DCID [9,10], all penetration rates. See the attachments for other DCIDs.

3) Lane number reduction from 3 to 2 lane (FSR-n2_4234.inpx)

A three-lane link is reduced to 2-lane link, maximum flow is measured. Desired speed of conventional
vehicles entering the network on the main link is set to 140 km/m with a wider spread between 80 and 205
km/h. Automated vehicles use the desired speed 130 +-2 km/h.

lane reduction
4,5

AV1 AV2 AV3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 71 of 81 h2020-coexist.eu

Pictures showing 95% quantile results for data collection groups:

Figure 16 Curve-fitting example: penetration rate 20%, DCID [4,5]. See the attachment for other penetration

rates.

AV1 AV2 AV3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 72 of 81 h2020-coexist.eu

Figure 17 Van Aerde diagrams for DCID [4,5], all penetration rates.

Table 12 Comments to 95%-Quantile results

DCID Comments

General

Reduction of the number of lanes from 3 to 2 shows better performance with AV2 and AV3
vehicles in comparison with conventional vehicles (zero penetration rate). The throughput
value is growing with growing penetration rate. Cautious vehicles (AV1) perform worse – the
throughput value decreases with increasing penetration rate (almost linearly).

 There is a difference to the case where only one lane remains after the reduction
(see the next network) and the throughput values decreases with lower penetration
rates.

[4,5]
Cautious vehicle decreases the throughput value almost linearly in dependency on the
penetration rate. AV2 and AV3 vehicles cause increase in the throughput with increasing
penetration rate non-linearly. AV3 shows more or less higher values than AV2.

4) Lane number reduction from 2 to 1 lanes (FSR-n1-SuP.inpx)

A two-lane link is reduced to 1-lane link, maximum flow is measured. Desired speed of conventional
vehicles entering the network on the main link is set to 140 km/m with a wider spread between 80 and 205
km/h. Automated vehicles use the desired speed 130 +-2 km/h.

lane reduction
1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 73 of 81 h2020-coexist.eu

Pictures showing 95% quantile results for data collection groups:

Table 13 Comments to 95%-Quantile results

DCID Comments

General

The conventional vehicles are using CC1 = 1,05 in this network (KIT value), AV2 and AV3
operate with smaller headways (0,9 or 0,7). Besides that, AV2 is influenced by increased
acceleration set to 105. That seems to cause the throughput drop. Changing increased
acceleration to 100 % for AV2 leads to higher throughput, close to the result of 0 %
penetrations rate. For AV3 changing the increased acceleration from 110 to 100 does not
bring higher throughput.

0% penetration rate seems to be more fluent at lane changing area (less stops, changing
during parallel driving).

Penetration < 100%: lower headways (including lower standstill distance) in combination
with increased acceleration bring higher saturation flow at signals but slightly lower
throughput in lane reduction case 2 lanes -> 1 lane.

Penetration nearly 100%: higher throughput also in lane reduction cases possible.

[1]
Cautious vehicles decrease the throughput almost linearly with growing penetration rate.
AV2 and AV3 vehicles cause decrease in the throughput in lower penetration rates. With
higher penetration rates (> 80% for AV2 or > 50% for AV3) the throughput goes up.

AV1 AV2 AV3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 74 of 81 h2020-coexist.eu

Figure 18 Curve-fitting example: penetration rate 40%, DCID [1]. See the attachment for other penetration rates.

Figure 19 Van Aerde diagrams for DCID [1], all penetration rates.

5) Saturation flow on one-lane link with signal (sat_flow_one_lane.inpx)

Results provide information for the calculation of the saturation flow. The green time used in the model was
set to 10, 20 or 30 seconds. First three links reflects the situation for direction “through“, without a speed
limitation. Second three links reflect the situation when the speed of vehicles is limited e.g. through
curvature when turning left or right. Desired speed is set to 50 km/h with wider spread for conventional
vehicles and 50+-2 km/h for autonomous vehicles.

1

2

3

4

5

6

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 75 of 81 h2020-coexist.eu

Pictures showing 95% quantile results for data collection groups:

Table 14 Comments to 95%-Quantile results

DCID Comments

General

First three data collection points represent situation at signals with through traffic, second
three data collection points represent the situation with turnings traffic where speed
limitation due curvature is expected. Cautious vehicles show linear decrease in throughput
with growing penetration rate. AV2 and AV3 vehicles show increase in throughput.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 76 of 81 h2020-coexist.eu

[1]
AV3 shows a linear throughput growth with growing penetration rate. AV2 shows a small
growth followed by stagnation. Caution vehicles (AV1) show linear decrease with growing
penetration rates.

[2]
AV3 shows a linear throughput growth with growing penetration rate. AV2 shows a small
growth followed by stagnation at high penetration rates. Caution vehicles (AV1) show linear
decrease with growing penetration rates.

[3]
AV3 shows a linear throughput growth with growing penetration rate. AV2 shows a small
growth followed by stagnation at high penetration rates. Caution vehicles (AV1) show linear
decrease with growing penetration rates.

[4]
AV3 shows a linear throughput growth with growing penetration rate. AV2 shows a small
growth followed by stagnation. Caution vehicles (AV1) show linear decrease with growing
penetration rates.

[5]
AV3 shows a linear throughput growth with growing penetration rate. AV2 shows a small
growth followed by stagnation. Caution vehicles (AV1) show linear decrease with growing
penetration rates.

[6]
AV3 shows a linear throughput growth with growing penetration rate. AV2 shows a small
growth followed by stagnation. Caution vehicles (AV1) show linear decrease with growing
penetration rates.

6) Simple one-lane link (simple_link.inpx)

This network provides results for theoretical capacity on one lane link under ideal conditions without
influence of intersections, parking manoeuvres or other sources of disturbance. The resulting maximum
flow depends on speed and settings for following behaviour. Desired speed is set to 50 km/h with wider
spread for conventional vehicles and 50+-2 km/h for autonomous vehicles.

In the micro model, we never see speeds slower then v0, because they are placed in that way into the
network. The fundamental diagram is basically a straight line parallel to the flow.

1

2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 77 of 81 h2020-coexist.eu

Pictures showing 95% quantile results for data collection groups:

Table 15 Comments to 95%-Quantile results

DCID Comments

General
Because the headway plays the most important role in following behaviour from the
capacity perspective, the trends in results are clear.

[1]
Cautious vehicles cause a decrease in the capacity of the link, especially from penetration
rate 40 % where the capacity decreases linearly. AV2 and AV3 vehicles lead into increase
of the link capacity, which is more visible for AV3 at penetration rates > 30 %.

[2]
Cautious vehicles cause a linear decrease in the capacity of the link. AV2 and AV3 vehicles
lead into increase of the link capacity, which is more visible for AV3 at penetration rates >
20 %.

In the micro model, we never see speeds slower then v0, because they are placed in that way into the
network. The fundamental diagram is basically a straight line parallel to the flow.

Figure 20 Curve-fitting example: penetration rate 50%, DCID [2]. See the attachment for other penetration rates.
– NOT REASONABLE CURVEFITTING because of the use case

AV1 AV2 AV3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 78 of 81 h2020-coexist.eu

Figure 21 Van Aerde diagrams for DCID [2], all penetration rates – NOT REASONABLE CURVEFITTING
because of the use case

7) Simple crossing and simple merging conflict

Results from this network provide information about the capacity of a simple conflict area for relative
comparison of different driving logics and penetration rates. Desired speed is set to 50 km/h with wider
spread for conventional vehicles and 50+-2 km/h for autonomous vehicles.

Pictures showing 95% quantile results for data collection groups:

1

2
4

3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 79 of 81 h2020-coexist.eu

Table 16 Comments to 95%-Quantile results

DCID Comments

General

The data collection point 1 and 4 are placed on links with the minor flow. There are visible
trend in the diagrams – cautious vehicles lead to capacity decrease, AV2 and AV3 vehicles
lead to capacity increase. The diagrams above show the case with high major flow.

DCID [2] and [3] are not relevant.

[1]
Almost linear capacity decrease with caution vehicles and almost linear capacity increase
with AV2 and AV3 vehicles.

[4]
Almost linear capacity decrease with caution vehicles and almost linear capacity increase
with AV3. AV2 shows also capacity increase but nonlinearly.

In this case, the van Aerde diagrams are not appropriate to show dependencies. The capacity depends on
the traffic volume in the major flow.

8) Influence of gradient - uphill slopes (S-n2_SuP.inpx)

Results from this network are showing the impact of gradient. The value of gradient impacts the driving
behaviour in Vissim via the maximum acceleration and maximum deceleration on a link:

 by -0.1 m/s² per gradient percent incline. The maximum accelerating power decreases when the
deceleration power increases.

 by 0.1 m/s² per gradient percent downgrade. The accelerating power increases when the
deceleration power decreases.

Desired speed is set to 130 km/h with wider spread for conventional vehicles and 130+-2 km/h for
autonomous vehicles.

1,2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 80 of 81 h2020-coexist.eu

Pictures showing 95% quantile results for data collection groups:

Table 17 Comments to 95%-Quantile results

DCID Comments

General
Please note: these results are calculated with cars only (slope has higher impact on HGVs,
than on cars).

[1,2]
AV2 and AV3 vehicles lead to capacity increase, AV3 significantly faster with growing
penetration rate. Cautious vehicles in the traffic flow lead to capacity drop.

Figure 22 Curve-fitting example: penetration rate 50%, DCID [1,2]. See the attachment for other penetration
rates.

AV1 AV2 AV3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

Page 81 of 81 h2020-coexist.eu

Figure 23 Van Aerde diagrams for DCID [1,2], all penetration rates.

Attachments

1) 95%-quantiles capacity diagrams (29 pictures)

Example:

A1-n3 SuP plus KAL_E1-n3_94789 DCID[9, 10, 11].png

2) Van Aerde diagrams (348 pictures)

Example:

A1-n3 SuP plus KAL_E1-n3_94789_DCID[1, 2, 3] PR10.png

3) Van Aerde data (1 excel file)

4) Curve fitting tool including individual data for manual curve fitting if needed

Network name
Data collection

points

Pene-
tration
rate

Network name
Data collection points

