

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 723201

D2.2: Technical report on

connecting CAV control

logic and CAV simulator

Version: 1.0
Date: 01.12.2017
Authors: Mohamed Cherif Rahal

Steve Pechberti
Bart Heijke
Peter Sukennik

The sole responsibility for the content of this document lies with the authors. It does not

necessarily reflect the opinion of the European Union. Neither the EASME nor the European

Commission are responsible for any use that may be made of the information contained therein.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No. 723201

Page 2 of 21 h2020-coexist.eu

Document Control Page

Title
D2.2 Technical Report on connecting CAV control logic and CAV

simulator

Creator Mohamed Cherif Rahal

Editor

Brief Description

Contributors

Mohamed Cherif Rahal (VEDECOM)

Steve Pechberti (VEDECOM)

Bart Heijke (TASS International)

Peter Sukennik (PTV Group)

Reviewer

Bernard Gyergyay (Rupprecht Consult)

Syrus Gomari (Rupprecht Consult)

Charlotte Fléchon (PTV Group)

Type (Deliverable/Milestone) Deliverable

Creation date 01.12.2017

Version number 1.0

Version date

Last modified by

Rights

Audience
 Internal

 Public

 Restricted, access granted to: EU Commission

Action requested
 To be revised by Partners involved in the preparation of the

Deliverable

 For approval of the WP Manager

 For approval of the Internal Reviewer (if required)

 For approval of the Project Co-ordinator

Deadline for approval

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No. 723201

Page 3 of 21 h2020-coexist.eu

Version Date Modified by Comments

0

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No. 723201

Page 4 of 21 h2020-coexist.eu

Table of contents

1 General introduction and context ... 5

2 Simulation ... 5

2.1 Presentation of VISSIM ... 6

2.2 Presentation of PreScan .. 7

2.2.1 Simulation in PreScan with Simulink .. 7

3 Presentation of control Logic (CL) ... 9

3.1 Renault CL ... 9

3.2 VEDECOM CL ... 11

3.2.1 Overview ... 11

4 Connection between VEDECOM CL and PreScan 12

4.1 Description ... 12

4.1.1 Adaptation of the vehicle model in PreScan... 13

4.2 Results... 13

5 Connection between Renault CL and PreScan .. 14

6 Connection between PreScan and Vissim ... 15

6.1 PTV Vissim - Driving simulator interface ... 15

6.1.1 Architecture ... 16

6.2 New development in PTV Vissim ... 18

7 Next steps ... 19

7.1.1 VEDECOM CL to VISSIM .. 19

7.2 Simulations & analysis ... 20

8 Conclusion ... 20

9 Development partners for D2.2 ... 21

10 Appendices ... 21

10.1 PTV Vissim API - Driver Model Interface ... 22

10.2 PTV Vissim API - Driving Simulator Interface .. 37

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No. 723201

Page 5 of 21 h2020-coexist.eu

1 General introduction and context

Within CoEXist, work package 2 (WP2) will develop and validate transport modelling software extensions

aimed at the analysis of impacts arising from the coexistence of conventional vehicles (CVs) and

connected and automated vehicles (CAVs), and the impact on safety and traffic efficiency of a step-wise

introduction of CAVs.

CoEXist will overcome the technical limitations that currently exist in traffic simulation and transport

modelling, by developing default driver behaviour parameter values for CAVs. This enables transport

planners without access to a CAV control logic (e.g. transport planners in road authorities) to model CAVs

with realistic default values or with own assumptions about the driving behaviour of CAVs, independent of

a CAV manufacturer. The default values are validated through a validation process with data collected

from three CAVs that are operated by TASS1, which were driven on the DICTM test track in Helmond,

Netherlands. Deliverable D2.6 (due April 2018) will further elaborate on this within a “technical report on

data collection and validation process”.

Deliverable D2.2 builds on the brief note (deliverable D2.1) on the proof of technology of a real-time closed

loop connection (software) between the CAV control logics, CAV simulator (PreScan2) and the traffic

simulator (Vissim3). D2.2 describes how the CAV behaviour parameter sets are extracted from the

connection with the control logics for sub-models (incl. lane change, car following and lateral positioning,

reaction on signals) to preset and define the CAV behaviour parameters in PTV’s microscopic traffic

simulation (Vissim).

This technical report aims to provide guidance for other CAV developers and traffic modellers to replicate

the same process.

2 Simulation

The initial simulations are performed in PreScan. Here all details concerning the ego vehicle, such as

vehicle dynamics, can be specified. Furthermore, all sensors that are attached to the ego vehicle can be

designed in detail. A wide range of sensor models is available, from simple ground-truth sensors to

complex physics-based sensors.

The PreScan graphical user interface (GUI) also provides a large amount of options for environment

design. Infrastructure and nature elements can be added from the library and simulated according to the

wishes of the user. Also light and weather settings can be changed accordingly.

Large traffic flows can be simulated in PreScan with the Vissim plugin. With this plugin, a co-simulation is

set up between PreScan and Vissim. The location and orientation of PreScan controlled vehicles and

1 TASS International: https://www.tassinternational.com/
2 For further information about PreScan: www.tassinternational.com/prescan
3 For further information about PTV Vissim: http://vision-traffic.ptvgroup.com/en-us/products/ptv-vissim/

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No. 723201

Page 6 of 21 h2020-coexist.eu

Vissim controlled vehicles are communicated between the two software programs. In this way, reactive

traffic can be added and adjusted easily.

2.1 Presentation of VISSIM

PTV Vissim is the leading microscopic simulation program for modelling multimodal transport operations

and belongs to the Vision Traffic Suite software of PTV. Realistic and accurate in every detail, Vissim

creates the best conditions to test different traffic scenarios before their realization. Vissim is now being

used worldwide by the public sector, consulting firms and universities. It is a microscopic, time step

oriented, and behaviour-based simulation tool for modelling urban and rural traffic as well as pedestrian

flows. For pedestrian flows, PTV Viswalk is available as a module or standalone application. PTV Viswalk

is the leading software for pedestrian simulation. Based on the social force model of Prof. Dr. Dirk Helbing,

it reproduces the human walking behaviour realistically and reliably. This software solution with powerful

features is used when it is necessary to simulate and analyse pedestrian flows, be it outdoors or indoors.

Vissim is based on a traffic flow model and light signal control. The traffic flow model is based on a car-

following model (see Figure 1) (for the modelling of driving in a stream on a single lane) and on a lane

changing model.

Figure 1 Car following model in PTV Vissim

Vehicles are moving in the network using a traffic flow model. The quality of the traffic flow model is

essential for the quality of the simulation. In contrast to simpler models in which a largely constant speed

and a deterministic car following logic are provided, Vissim uses the psycho-physical perception model

developed by Wiedemann (1974) as shown in Figure 1. The basic concept of this model is that the driver

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No. 723201

Page 7 of 21 h2020-coexist.eu

of a faster moving vehicle starts to decelerate as he reaches his individual perception threshold to a slower

moving vehicle. Since he cannot exactly determine the speed of that vehicle, his speed will fall below that

vehicle’s speed until he starts to slightly accelerate again after reaching another perception threshold.
There is a slight and steady acceleration and deceleration. The different driver behaviour is taken into

consideration with distribution functions of the speed and distance behaviour.

2.2 Presentation of PreScan

PreScan is a simulation platform consisting of a GUI-based preprocessor to define scenarios and a run-

time environment to execute them. The engineer's prime interface for making and testing algorithms

includes MATLAB and Simulink. PreScan can be used from model-based controller design (MIL) to real-

time tests with software-in-the-loop (SIL) and hardware-in-the-loop (HIL) systems. PreScan can operate

in open-loop & closed-loop, and offline & online mode. It is an open software platform which has flexible

interfaces to link to 3rd party vehicle dynamics model (e.g. CarSIM, dSPACE ASM, etc) and 3rd party HIL

simulators/hardware (e.g. ETAS, dSPACE, Vector).

PreScan comprises several modules that together provide everything an automated driving system

developer needs. An intuitive graphical user interface allows you to build your scenario and model your

sensors, while the Matlab/Simulink interface enables you to add a control system. This interface can also

be used to import existing Matlab/Simulink models such as vehicle dynamics models. When running your

experiment, the visualisation viewer provides a realistic 3D representation of the scenario (see Figure 2).

Optionally, tools such as dSPACE ControlDesk and NI LabVIEW can be used for activities such as ‘data
acquisition’ and ‘test automation’.

Figure 2: PreScan 3D visualisation viewer

2.2.1 Simulation in PreScan with Simulink

Scenario building and simulating in PreScan are performed in four steps as shown in Figure 3:

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No. 723201

Page 8 of 21 h2020-coexist.eu

Figure 3: PreScan experiment process

1. Build scenario

A dedicated preprocessor (GUI) allows users to build and modify traffic scenarios within minutes

using a database of road sections, infrastructure components (trees, buildings, traffic signs),

actors (cars, trucks, bikes and pedestrians), weather conditions (such as rain, snow and fog) and

light sources (such as the sun, headlights and lampposts). Representations of real roads can be

quickly made by reading in information from OpenStreetMap, Google Earth, Google 3D

Warehouse and/or a GPS navigation device.

2. Model sensors

Vehicle models can be equipped with different sensor types, including radar, laser, camera,

ultrasound, infrared, GPS and antennas for vehicle-to-X (V2X) communication. Sensor design

and benchmarking is facilitated by easy exchange and modification of sensor type and sensor

characteristics.

3. Add control system

A Matlab/Simulink interface enables users to design and verify algorithms for data processing,

sensor fusion, decision making and control as well as the re-use of existing Simulink models such

as vehicle dynamics models from CarSim, Dyna4 or ASM.

4. Run experiment

A 3D visualisation viewer allows users to analyse the results of the experiment. It provides

multiple viewpoints, intuitive navigation controls, and picture and movie generation capabilities.

Also, interfaces with ControlDesk and LabView can be used to automatically run an experiment

batch of scenarios as well as to run hardware-in-the-loop (HIL) simulations.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No. 723201

Page 9 of 21 h2020-coexist.eu

3 Presentation of control Logic (CL)

3.1 Renault CL

The Renault CL is relying on Robotics Operating System (ROS)4, a messages and services oriented

framework, inside an Ubuntu Computer. The CL is an Ubuntu and ROS application, written entirely in C++

language. To interface this CL to PreScan there are two alternatives:

 Development of a C++ interface, which handle the needed messages and send/ or receive them

through TCP/UDP functions to/from PreScan, which enable communication.

 The other method, which seems simpler and more flexible is to rely on Matlab/Simulink software,

which is natural to PreScan, and has a ROS toolbox. The idea is that Matlab/Simulink are acting

simply as a ROS node, and then there is no need to develop any kind of function interfaces.

The simulation would be playing the scenarios generated with the navigation system and decision

making (NSDM) software (see Figure 4), where the scenarios rely on the perception output from the

sensors provided by PreScan, and the same simple maps configured on PreScan and the Autonomous

Driving Commuter Car (ADCC) software (see Figure 5 to 7).

Navigation System and Decision Making

Global Path

computation

Safety Management

Obstacle Predictor

(latency

compensation)

Decision Making
Local Path

computation

State
Management
(Supervisor)

Route and local
map (Map Service)

Absolute
position (World
Model)

Interpreted
objects
(World Model)

Short term path
and speed profile
(Control)

Figure 4: The functional architecture of the NSDM

4 www.ros.org

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No. 723201

Page 10 of 21 h2020-coexist.eu

Figure 5: Architecture of ADCC A.V. vehicle software

World Model

Perception

System

Navigation & Decision-Making

Supervisory Control System

Driver - Vehicle Interaction

Safety System

Cloud Control & Support

Centre

Vehicle - Surroundings

Interaction

Navigation

Maps
Localization &
Vehicle State

Decision Making

Path planning

Vehicle Control

System

Vehicle Controller

Actuation Control

Accessories Control

Vehicle Interface
Box

Mission Planning

Routing

Figure 6: Architecture of ADCC

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No. 723201

Page 11 of 21 h2020-coexist.eu

ADCC Safety

Devices

ADCC Vehicle

Control System

ADCC Vehicle

Interface Module

ADCC Data Logging

System

Vehicle CAN BUS

ADCC CAN BUS Electric CAN BUS

Unresolved (ETHERNET OR ADCC BUS) Hardware

Component

Software

Component

System

Abstraction

ADCC Vehicle Interface Box

ADCC Navigation &

Decision Making

System

ADCC Vehicle State

& Localization

System

ADCC Supervisory

Control System

ADCC Embedded Systems

(Actuators, Sensors , ECUs and Accessories)

ADCC 2.0

ADCC Vehicle

Control Module

ADCC Accessories

Control Module

Figure 7: The Vehicle Control System

3.2 VEDECOM CL

The VEDECOM-CL software is defined in the MATLAB-Simulink platform which enables an easy

integration with the PreScan software as there is an existing interface with Simulink.

The current defined model is a lighter version of the current VEDECOM-CL software. The objective of this

initial version was to resolve all interface issues that could happen when there is an interface between

different software.

This version provides a reduced set of functionalities, defined in the next section (4. Connection between

VEDECOM CL and PreScan).

3.2.1 Overview

Figure 8 (see below) presents the integrated version of VEDECOM CL. It has already integrated several

aspects of the complete CAV CL: lateral and longitudinal control, speed and steering regulation.

Currently lateral and longitudinal controls rely on a pre-defined trajectory, but already take into account

several aspects of a more complex control logic (see Section 4.2: Results).

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No. 723201

Page 12 of 21 h2020-coexist.eu

Figure 8 Composition of the VEDECOM CL for CoEXist

4 Connection between VEDECOM CL and
PreScan

4.1 Description

To develop a vehicle behaviour simulation acting like CAVs, some CAV behaviour models have to be

introduced into the simulation framework. One of these models operated with PreScan is a simplified

VEDECOM control logic (VCL). It is currently developed with Simulink: a part of the MATLAB product that

enables developers to build complex systems based on a diagram for interaction between the different

subsystems that compose the defined software. It embeds different already existing components and

allows users to build their own configurations, typically as in the case of CoEXist, using the different parts

that compose the control logic of a CAV (see. https://fr.mathworks.com/products/simulink.html).

As PreScan provides an existing integration with Simulink, the integration of the VEDECOM CL into the

simulation loop does not suffer technological issue due to the interface. Figure 9 below provides an

overview of the VEDECOM CL integration into the simulation loop of PreScan.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No. 723201

Page 13 of 21 h2020-coexist.eu

Figure 9 Overview of the VEDECOM CL integration into the simulation loop of PreScan

From left to right, Figure 9 illustrates first the PreScan input information needed by VCL, then the control

logic (described in 3.2.1 Overview) that computes the requested trajectory based on the input information,

i.e. the actuator orders, and thereafter the trajectory information is sent back to PreScan to control the

vehicle model.

4.1.1 Adaptation of the vehicle model in PreScan

One major issue for the interface between PreScan and VEDECOM CL was the dynamic model of the

controlled vehicle and particularly about the defined engine system. Indeed, all PreScan defined vehicle

models are currently based on thermal motors which use a gear box, whereas the VEDECOM CL is

defined for an electric vehicle.One of the main task about this issue was to adapt an existing thermal

engine model to fulfil VEDECOM CL requirement. This adaptation has been made in partnership with

PreScan engineer Bart Heijke (TASS).

4.2 Results

During the PreScan training session on 13.07.2017, which took place at the VEDECOM Institute in

Versailles, France a very simple scenario has been developed in order to make initial tests for the

VCL/PreScan integration.

From this scenario, we could test several functionalities, among them, we can cite:

 Trajectory following, where speed regulation is computed according to the following aspects:

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No. 723201

Page 14 of 21 h2020-coexist.eu

 Road curvature: depending on the curvature, the vehicle adapts its velocity for passenger

safety and comfort. It is possible to make it more reactive depending on the payload (passenger

or goods)

 Obstacles: if an obstacle is on the trajectory of the CAV, the CL adapts the velocity to always

respect a safe gap distance between the previous vehicle and the CAV, in order to be able to

realize an emergency break if something goes wrong.

 Mandatory speed limit (SML): the third aspect of speed regulation is about MSL, the CAV

must respect them and the defined CL takes them into account to compute the current velocity.

 Steering regulation

 This parameter relies on the road geometry only, it is associated to the lateral control.

A demonstration video is available here that illustrates these results.

5 Connection between Renault CL and PreScan

The Autonomous Driving Commuter Car (ADCC) A.V. software will be running on an Ubuntu platform with

ROS, this may be a dedicated computer connected to a Windows PC running Prescan and

Matlab/Simulink, or a single Windows platform running Prescan and Matlab/Simulink and the ADCC

software will be running inside an Ubuntu virtual machine hosted by this PC.

Navigation Control
Vehicle

Model

MAP Service Supervisor

Prescan

Topics ROS

Trajectory

Headin

g,

speed

Localisation

Perception

Localisation

States

Destination

MAP

PC Linux/ROS/Vehicle software

PC Windows/MATLAB/SIMULINK

Vehicle States

Interfaces to be

developed

Simulation Architecture

PC Prescan

Virtual

Camera

Virtual

Lidar

Virtual

GPS

Map format converter

Shapefile to

OpenDrive/RoadXML

Topics ROS

Figure 10: Connection between Renault ADCC and Prescan

https://www.youtube.com/watch?v=UEc0EPIh1i8

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No. 723201

Page 15 of 21 h2020-coexist.eu

As shown in Figure 10, the ADCC ROS messages have been integrated inside Matlab/Simulink, but there

are blocking version problems (i.e. compatibility issues). Renault owns Matlab/Simulink version 2016b,

which is the official version inside Renault, and Matlab/Simulink 2017b for testing purposes, but

unfortunately these two versions are not supported by PreScan, they will be supported in version 8.3,

which is planned for the first quarter of 2018. In the meantime, a temporary license for 2015b (supported

by PreScan) will be used.

Initially a virtual machine with scenarios will be set up and very simple scenarios will be run. Currently real

maps used by ADCC, due to the proprietary format, are not supported by PreScan (limitation with

OpenStreetMap).This can potentially be overcome by developing an XML module translator to ease the

import of real world ADCC maps to PreScan. The following steps need to be addressed now:

 Ensure the link between ROS/ADCC – Matlab/Simulink – PreScan is working.

 Set up simple scenarios with simple maps.

 Integrate more elaborate vehicles dynamics models.

6 Connection between PreScan and Vissim

6.1 PTV Vissim - Driving simulator interface

The PTV Vissim add-on module "Driving Simulator Interface" (see Figure 11) allows to connect Vissim to

a driving (cycling, walking) simulator (DS). That DS can either be a simulator hardware used by a human

or a piece of software representing the algorithms of a CAV (or multiple CAVs).

Vissim provides the surrounding traffic (vehicles, bicycles, pedestrians) to be visualized in the DS, and the

DS passes back the current position and orientation of the simulator vehicle(s) (bicycle(s) / pedestrian(s)).

The vehicles and pedestrians in the Vissim network react to this simulator data as to all other vehicles and

pedestrians in the microscopic simulation model. In addition, Vissim passes traffic signal states to the DS

for visualization, and the DS can set detectors in Vissim explicitly in order to affect the signalization.

The DS does not need to know the Vissim data model where the network is modelled from links,

connectors, areas, ramps and obstacles. The DS needs to have its own world model (for simulation and

visualization). As all vehicle and pedestrian positions are exchanged in Cartesian world coordinates (x/y/z),

the DS must be able to provide/use such coordinates, and the coordinates of the networks on both sides

(Vissim / DS) must match precisely.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No. 723201

Page 16 of 21 h2020-coexist.eu

Figure 11 Driving simulator interface

6.1.1 Architecture

The DS software must connect to a Windows DLL provided by PTV. This DLL communicates with a Vissim

instance on the same computer through shared memory. If the DS software doesn't run on Windows, it

needs to connect to a Windows application to be built by the user through sockets or any other means of

process communication.

The start of the Vissim instance is triggered through a function call from the DLL, with the desired Vissim

version and the network file name to be loaded as parameters. Additional optional parameters allow to set

the frequency of the simulator, a visibility radius, the maximum number of data sets for vehicles,

pedestrians, signal groups and detectors to be passed in one or both directions. Vissim is started through

the COM interface, so it needs to be registered as COM server. In the Vissim network settings, the option

"driving simulator" needs to be activated, and a vehicle type must be selected to be used for the DS

vehicles. After loading the network, Vissim establishes the communication to the DLL and waits for the

starting location of the DS vehicle (in world coordinates, fitting with the Vissim network) to be passed from

the DLL.

Vissim determines the most probable location for the DS vehicle in the Vissim network by selecting from

all links at the passed world coordinates the link with the driving direction closest to the orientation of the

DS vehicle. After the vehicle has been placed at that location in the Vissim model, the first time step of the

Vissim simulation is executed. After that time step, Vissim passes the world coordinates of all vehicles in

the network (except the DS vehicle) to the DLL and waits for the new location of the DS vehicle. The

simulator can now read the new locations of the Vissim vehicles, visualize them and then pass back the

new location of the DS vehicle. After this, Vissim immediately calculates the next time step, and so on.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No. 723201

Page 17 of 21 h2020-coexist.eu

Before the DS passes the new location of the simulator vehicle to Vissim, it can optionally set detector

states. Before or after retrieving the new locations of the Vissim vehicles, the DS can optionally retrieve

the signal states passed from Vissim and/or a list of all vehicles which have entered the Vissim network in

this time step, a list of all vehicles which have left the Vissim network in this time step and a list of all

vehicles which have changed their location in this time step. This data exchange between Vissim and the

DS must be executed at least once per Vissim simulation time step. If the simulator runs at a higher

frequency (frame rate) than Vissim, the interface provides automatic interpolation of the positions of the

Vissim vehicles and pedestrians between Vissim simulation time steps.

The timing of the co-simulation is controlled by the DS. It can run faster than real time (if this is possible

for the DS) but not faster than a stand-alone Vissim simulation of the same network. (The Vissim simulation

of a time step can take much less or much more than real time, depending on the used hardware and the

size of the network. A big network might not be possible to be simulated with very short time steps in real

time). The simulation speed in Vissim needs to be set to “maximum”, and the visualization in Vissim should

be switched off in order to achieve the highest possible simulation speed. The DS can slow down the co-

simulation as much as it requires (usually to exactly real time) without hurting the Vissim simulation at all.

The Vissim plugin of PreScan is a tool that enables co-simulation and data transfer between PreScan and

Vissim. This makes it possible to have traffic on a road network in a PreScan simulation that is generated

by Vissim as shown in Figure 12.

Figure 12: Vissim scenario playing with 3D rendering

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No. 723201

Page 18 of 21 h2020-coexist.eu

6.2 New development in PTV Vissim

PTV released the new version PTV Vissim 10 in October 2017. This version has several new functionalities

& improvements, which were partially developed under CoEXist project and can be used by users with

correspondent application programming interface (API). Both interfaces can be used for the simulation of

automated vehicles by users who have the control algorithms for automated vehicles. Most interesting

new features and improvements are:

For DrivingSimulator.DLL interface:

 Automatic interpolation of Vissim vehicle/pedestrian world coordinates, orientations and speeds

between Vissim time steps if the simulator informs Vissim about a higher frame rate than the Vissim

simulation resolution in the call of VISSIM_Connect().

 Optionally, simulator pedestrians can be passed to Vissim now. The pedestrian type for those

needs to be selected in the network settings on the new tab page "Driving simulator". (The

checkbox for activation of the driving simulator interface and the selection box for the vehicle type

for simulator vehicles have been moved there as well.)

 The maximum number of objects of each type to be exchanged between the simulator and Vissim

can be set by the simulator in the call of VISSIM_Connect().

 The simulator can pass a maximum visibility radius to Vissim in the call of VISSIM_Connect().

Vissim vehicles and pedestrians will be passed to the simulator only if they are inside of this radius

from the centre of the front end of a simulator vehicle or pedestrian.

For DriverModel.DLL interface:

 External driver model DLLs may be used now in multithreaded simulation runs if all DLLs confirm

that they support multithreading. (Unless there is only one externally controlled vehicle or all

externally controlled vehicles are on the same link, the DLL needs to be programmed accordingly,

of course.)

 If the DLL requests it, Vissim sends the data of all nearby vehicles that the ego vehicle sees

according to the current driving behaviour (min./max. look ahead and look back distances, number

of observed vehicles) instead of at most 2 each upstream and downstream per lane.

 User-defined vehicle attribute values can be passed to the DLL and can be modified by the DLL.

 World coordinates of the front end and rear end of nearby vehicles are passed from Vissim to the

DriverModel.DLL as well. The polyline of the current lane of the ego vehicle (along its route/path,

within the visibility distance) is passed to the DLL as well.

The full description of both mentioned PTV Vissim interfaces can be found in Appendix (see appendix 1:

“PTV Vissim API - Driver Model Interface.pdf“ and appendix 2: “PTV Vissim API - Driving Simulator

Interface.pdf”).

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No. 723201

Page 19 of 21 h2020-coexist.eu

7 Next steps

7.1.1 VEDECOM CL to VISSIM

Next steps by VEDECOM:

 Run co-simulations in PreScan and Vissim in several traffic situations in simple (principal) models

providing outputs for Vissim developers (requires deliverables from WP3).

 Work on an additional solution using Vissim´s “driver model interface” which would allow to run the
VEDECOM´s control logic directly in Vissim, without PreScan (DLL will be provided CW48 and

documentation CW49). This approach does not include the sensor simulation sensors (that part

can be done only with co-simulation), but would be a great help for the further development of

Vissim.

Next steps by PTV until May 2018:

 Analyse the outputs from the co-simulations and incorporate necessary results into the Vissim

driving behaviour model.

 Provide support for VEDECOM for a successful transfer of the control algorithms to Vissim´s driver

model interface.

 Use the DLL from VEDECOM with driver model interface for simulation test – observing and

analysing the driving behaviour (especially differences to actual human driver behaviour model).

7.1.1.1 Driver model interface approach

The Eexternal driver model DLL interface of Vissim provides the option to replace the internal driving

behaviour by a fully user-defined behaviour for some or all vehicles in a simulation run. The user-defined

algorithm must be implemented in a DLL written in C/C++ which contains specific functions (as specified

below). During a simulation run, Vissim calls the DLL code for each affected vehicle in each simulation

time step to determine the behaviour of the vehicle. Vissim passes the current state of the vehicle and its

surroundings to the DLL and the DLL computes the acceleration / deceleration of the vehicle and the lateral

behaviour (mainly for lane changes) and passes the updated state of the vehicle back to Vissim.

The external driver model can be activated for each vehicle type separately in the dialog box “Vehicle
Type” by checking the checkbox "Use external driver model” on the tab page “External Driver Model" and

selecting a driver model DLL file and optionally a parameter file to be used. If this option is checked, the

driving behaviour of all vehicles of this vehicle type will be calculated by the selected DLL. A subdirectory

DriverModelData\ must exist in the directory of vissim.exe in order to avoid a warning message when

Vissim is started.

7.1.1.2 Use of driver model interface within CoExist

PTV will use the DLL delivered by VEDECOM to run test simulations in PTV Vissim and to run several

evaluations in order to find out the differences in driving behaviour between automated vehicles and

conventional vehicles. Automated vehicles will be powered by VEDECOM control algorithms, conventional

vehicles by existing PTV Vissim driving behaviour algorithms. Understanding the differences in driving

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No. 723201

Page 20 of 21 h2020-coexist.eu

behaviour of automated vehicles is a precondition for successful AV-ready development of the microscopic

simulation software PTV Vissim.

7.2 Simulations & analysis

Next steps for VEDECOM:

 Provide PTV with a “Black-Box” DLL of VEDECOM-CL with documentation about its inputs and

outputs before middle of December 2017.

 Integrate into the initial CL used to prototype the global architecture of CoEXist platform more

functionalities to obtain a more realistic CAV model.

Next steps for Renault:

 As the initial major issue about interfacing Renault-CL and PreScan is going to be solved, Renault

will discuss with PTV to define the correct way to interface their CL and VISSIM. Different options

have been evocated, one seems to be the more feasible: providing a Virtual Machine with Renault-

CL embedded with a network communication API to exchange information with Vissim.

Next steps for VEDECOM and Renault:

 Run co-simulations in PreScan and Vissim in several traffic situations of simple (principal) models

providing outputs for Vissim developers.

Next steps for PTV Group until May 2018:

 Analyse the outputs from co-simulations and incorporate necessary results into Vissim driving

behaviour model.

 Provide support for VEDECOM to successfully transfer the control algorithms to Vissim´s driver

model interface.

 Use the DLL from VEDECOM with driver model interface for simulation test – observe and analyse

the driving behaviour (especially differences to actual human driver behaviour model).

8 Conclusion

CoExist software solution for traffic simulation including AV models is currently making good

progress.Initial issues have mainly been solved and a first version of the CAV model is going to be

integrated in the final platform used by CoEXist cities.

As inter operation problems are resolved, partners (VEDECOM) will work on modelling improvements to

provide a more advanced solution, more realistic and including higher level functionality to fulfil the

expected behaviour of a level-5 autonomous vehicle.

Different solutions have been discussed between partners to integrate these improvements inside the final

CoEXist platform. As the CoEXist platform will mainly rely on Vissim, VEDECOM-CL and Renault-CL

models should be integrated inside Vissim as a new vehicle behaviour model. Two main tasks are required

to achieve this goal: improvement and integration. Integration in Vissim suffers, from the VEDECOM point

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No. 723201

Page 21 of 21 h2020-coexist.eu

of view, from requiring a lot of adaptation of the VEDECOM-CL to be compliant with Vissim data format.

As this work requires a good knowledge of Vissim, it has been agreed that VEDECOM will provide its

model as a Black Box with documentation of its interfaces. With this material, Vissim team could realise

the interface between the V-CL and its software and analyse the V-CL behaviour to define its own CAV

model.

This way, during the next phases of the work package 2 of CoEXist, VEDECOM will focus on the CAV

modelling improvement and will periodically provide new model functionalities for Vissim. As the interfaces

will not evolve between two deliveries, integration inside Vissim will not add overloads for the PTV team.

9 Development partners for D2.2

10 Appendices

10.1 PTV Vissim API - Driver Model Interface

10.2 PTV Vissim API - Driving Simulator Interface

 PTV VISION API

PTV VISSIM DRIVERMODEL DLL

INTERFACE DOCUMENTATION

 PTV Vissim DriverModel DLL - Interface Documentation Imprint

 © 2017 PTV AG Page 2

Imprint

This documentation is valid for PTV Vissim version 10.00-03 and later.

Modifications added after Vissim 10.00-02 are marked like this.

Edited by: Lukas Kautzsch

© 2017

PTV Planung Transport Verkehr AG

Haid-und-Neu-Str. 15

D-76131 Karlsruhe

Germany

Phone: +49 721 9651-0

Fax: +49 721 9651-699

info@vision.ptvgroup.com

www.ptvgroup.com

All rights reserved.

Contents

Imprint 2

Contents 2

1 General 3

2 DLL Interface 3

3 Commands 5

3.1 Init .. 5

3.2 CreateDriver ... 6

3.3 MoveDriver ... 6

3.4 KillDriver ... 13

4 Lane Change 14

4.1 Simple lane change - handled by Vissim ... 14

4.2 Lane change - handled by the driver model DLL ... 15

5 Multithreading 15

 PTV Vissim DriverModel DLL - Interface Documentation General

 © 2017 PTV AG Page 3

1 General

The External Driver Model DLL Interface of Vissim provides the option to replace the internal

driving behavior by a fully user-defined behavior for some or all vehicles in a simulation run. The

user-defined algorithm must be implemented in a DLL written in C/C++ which contains specific

functions (as specified below). During a simulation run, Vissim calls the DLL code for each affected

vehicle in each simulation time step to determine the behavior of the vehicle. Vissim passes the

current state of the vehicle and its surroundings to the DLL and the DLL computes the acceleration

/ deceleration of the vehicle and the lateral behavior (mainly for lane changes) and passes these

values back to Vissim to be used in the current time step.

The external driver model can be activated for each vehicle type separately in the dialog box

“Vehicle Type” by checking the checkbox "Use external driver model” on the tab page “External
Driver Model" and selecting a driver model DLL file and optionally a parameter file to be used. If

this option is checked, the driving behavior of all vehicles of this vehicle type will be calculated by

the selected DLL.

A subdirectory DriverModelData\ must exist in the directory of vissim.exe in order to avoid a

warning message when a simulation run is started.

If the number of cores is not set to 1 in the Simulation Parameters of the Vissim network, the DLL

needs to confirm that it supports multithreading. If it doesn’t, the simulation run is canceled with an
error message.

2 DLL Interface

For the implementation of the DLL, several source code files are provided:

► DriverModel.h: Header file for a driver model DLL.

This file should not be changed. It contains the definitions of all "type" and "number" constants

used by Vissim in calls of the “DriverModel*” DLL functions which are declared here, too.

► DriverModel.cpp: Main source file of a driver model DLL.

This file is the place where calculations or calls of functions of the driving behavior model

algorithm should be added. Provided is a dummy version which does "nothing" (sets

DRIVER_DATA_WANTS_SUGGESTION and DRIVER_DATA_USE_INTERNAL_MODEL).

(In contrast, the file DriverModelExample.cpp contains a very simple following model which

actually overrides the internal model of Vissim.)

The preprocessor #define DRIVERMODEL_EXPORTS must be set in the compiler options for

compilation of DriverModel.cpp! (This is included in the provided project file – see below.)

► DriverModel.vcproj: Visual C++ 2010 project file for a driver model DLL. This file can be used if

the DLL is to be created with Microsoft Visual C++.

A driver model DLL must contain and export 3 functions which are called from Vissim:
DriverModelSetValue, DriverModelGetValue and

DriverModelExecuteCommand.

The signature of these functions and their meaning is as follows:

 PTV Vissim DriverModel DLL - Interface Documentation DLL Interface

 © 2017 PTV AG Page 4

int DriverModelSetValue (long type,
 long index1,
 long index2,
 long long_value,
 double double_value,
 char* string_value);

Vissim passes the current value of the data item indicated by type and (for most types) indexed

by index1 and sometimes index2. The value is passed in long_value, double_value or

string_value, depending on type.

The code in the function must make sure to save the value somewhere if it is required later for the

driving behavior calculation because the next call of this function from Vissim will overwrite the

local parameter.

(In the provided dummy DLL the values suggested by Vissim (via several calls to
DriverModelSetValue) are saved in global variables in order to be able to send them back

when Vissim calls DriverModelGetValue after the one call of

DriverModelExecuteCommand (DRIVER_COMMAND_MOVE_DRIVER) per vehicle per

time step.)

The function must return 1 for all types which are not marked as optional in the documentation

below. For optional types, it can return 0 to inform Vissim that it doesn’t handle this type.

int DriverModelGetValue (long type,
 long index1,
 long index2,
 long *long_value,
 double *double_value,
 char* *string_value);

Vissim retrieves the value of the data item indicated by type and (for most types) indexed by

index1 and sometimes index2. Before returning from this function, the value must be written to

either *long_value, *double_value or *string_value, depending on the data type of

the data item.

The function must return 1 for all types which are not marked as optional in the documentation

below. For optional types, it can return 0 to inform Vissim that it doesn’t handle this type.

int DriverModelExecuteCommand (long number);

Vissim requests execution of the command indicated by number.

Currently available command constants are DRIVER_COMMAND_INIT,

DRIVER_COMMAND_CREATE_DRIVER, DRIVER_COMMAND_MOVE_DRIVER and

DRIVER_COMMAND_KILL_DRIVER. The function must return 1 for all these commands lest

Vissim stop the simulation run.

Before Vissim requests execution of one of the available commands (Init, CreateDriver,

MoveDriver, KillDriver) of the DLL there are always several calls of the DLL function

DriverModelSetValue, one for each data item that might be used by the DLL when executing

the command.

After the command MoveDriver has finished computation, the resulting state of the vehicle is

fetched from the DLL in a similar manner again by several calls of DriverModelGetValue.

For a complete list of defined values for type and number see DriverModel.h.

 PTV Vissim DriverModel DLL - Interface Documentation Commands

 © 2017 PTV AG Page 5

3 Commands

There are 4 commands that a driver model DLL must implement:
Init, CreateDriver, MoveDriver and KillDriver.

3.1 Init

This command is executed through a call of
 DriverModelExecuteCommand (DRIVER_COMMAND_INIT)

at the start of a Vissim simulation run to initialize the driver model DLL.

Several basic parameters are passed to the DLL before this through
 DriverModelSetValue () (shortened “Set” below),

and some values are retrieved from the DLL through
 DriverModelGetValue () (“Get”).

The sequence of calls to the DLL is as follows:

For each vehicle type which uses that DLL:

Get DRIVER_DATA_STATUS (optional)

Get DRIVER_DATA_STATUS_DETAILS (only if STATUS is not 0; optional)

Set DRIVER_DATA_PATH

Set DRIVER_DATA_PARAMETERFILE (optional)

Set DRIVER_DATA_TIMESTEP

Set DRIVER_DATA_TIME

Set DRIVER_DATA_VEH_TYPE

Get DRIVER_DATA_WANTS_SUGGESTION

Get DRIVER_DATA_SIMPLE_LANECHANGE

Get DRIVER_DATA_WANTS_ALL_NVEHS (optional)

Then only once:

Get DRIVER_DATA_ALLOWS_MULTITHREADING (optional)

 DriverModelGetValue must set *long_value to 1 and return 1 if multiple cores are

 set to be used in the simulation parameters

For each user-defined attribute for vehicles in Vissim:

Set DRIVER_DATA_USE_UDA (optional)

 index1 = key of the UDA; string_value = short name of the UDA

 DriverModelSetValue must return 1 if values for this UDA are to be sent later for each

 vehicle and nearby vehicle, else 0

Execute DRIVER_COMMAND_INIT

Get DRIVER_DATA_STATUS (optional)

Get DRIVER_DATA_STATUS_DETAILS (only if STATUS is not 0; optional)

 PTV Vissim DriverModel DLL - Interface Documentation Commands

 © 2017 PTV AG Page 6

3.2 CreateDriver

DriverModelExecuteCommand (DRIVER_COMMAND_CREATE_DRIVER) is called from

Vissim during the simulation run whenever a new vehicle is set into the network in Vissim (at the

start of a time step, from a vehicle input, a PT line or a parking lot). In the same time step, a
command MoveDriver for the same vehicle will follow later.

The sequence of calls to the DLL is as follows:

Set DRIVER_DATA_TIMESTEP

Set DRIVER_DATA_TIME

Set DRIVER_DATA_VEH_TYPE = VehicleTypeNumber

Set DRIVER_DATA_VEH_ID = NumberOfNewVehicle

Set DRIVER_DATA_VEH_DESIRED_VELOCITY = InitialDesiredVelocity

Set DRIVER_DATA_VEH_X_COORDINATE

Set DRIVER_DATA_VEH_Y_COORDINATE

Set DRIVER_DATA_VEH_Z_COORDINATE (optional)

Set DRIVER_DATA_VEH_REAR_X_COORDINATE (optional)

Set DRIVER_DATA_VEH_REAR_Y_COORDINATE (optional)

Set DRIVER_DATA_VEH_REAR_Z_COORDINATE (optional)

Execute DRIVER_COMMAND_CREATE_DRIVER

3.3 MoveDriver

DriverModelExecuteCommand (DRIVER_COMMAND_MOVE_DRIVER) is called from

Vissim during the simulation run once per stime step for each vehicle of a vehicle type which uses
this DriverModel DLL. Before this call, there are many calls of DriverModelSetValue () to

pass the current state of the vehicle and its surroundings to the DLL. After the execution of the
command, there are several calls of DriverModelGetValue () to retrieve the new values for

acceleration and lateral behavior and optionally user-defined attributes from the DLL. Before any

vehicle specific data is exchanged, Vissim passes the states of all signal groups and priority rules

to the DLL.

The sequence of calls to the DLL is as follows:

3.3.1 Global data

Set DRIVER_DATA_TIMESTEP

Set DRIVER_DATA_TIME

For each SC (passed in index1), for each signal head (number passed in index2):

Set DRIVER_DATA_SIGNAL_STATE =

 red = 1, amber = 2, green = 3, red/amber = 4, amber flashing = 5, off = 6,

 other = 0

For each priority rule section (“yield sign”) (index 1 = 0; number passed in index2):
Set DRIVER_DATA_SIGNAL_STATE =

 blocked = 1, free = 3

 PTV Vissim DriverModel DLL - Interface Documentation Commands

 © 2017 PTV AG Page 7

3.3.2 Vehicle specific data

For each vehicle of a vehicle type using this driver model DLL first its own data is passed from

Vissim to the DLL, then data of all nearby vehicles along the route of the vehicle and then some

data about the upcoming link / lanes geometry and other network objects. Then, the command to

move the vehicle is called, and finally, the data calculated by the DLL is retrieved.

Data of the subject vehicle (at the start of the current time step)

Set DRIVER_DATA_TIMESTEP =

 time step length [simulation seconds] [0.1 .. 1.0]

Set DRIVER_DATA_TIME =

 current simulation time (simulation seconds since simulation start)

Set DRIVER_DATA_VEH_ID =

 ID of the vehicle to be moved

Set DRIVER_DATA_VEH_LANE =

 current lane number (rightmost = 1)

Set DRIVER_DATA_VEH_ODOMETER =

 total elapsed distance in the network [m]

Set DRIVER_DATA_VEH_LANE_ANGLE =

 angle relative to the middle of the lane [rad]

Set DRIVER_DATA_VEH_LATERAL_POSITION =

 distance of the front end from the middle of the lane [m]

Set DRIVER_DATA_VEH_VELOCITY =

 current speed [m/s]

Set DRIVER_DATA_VEH_ACCELERATION =

 current acceleration [m/s²]

Set DRIVER_DATA_VEH_LENGTH =

 vehicle length [m]

Set DRIVER_DATA_VEH_WIDTH =

 vehicle width [m]

Set DRIVER_DATA_VEH_WEIGHT =

 vehicle weight [kg]

Set DRIVER_DATA_VEH_MAX_ACCELERATION =

 maximum possible acceleration [m/s²]

Set DRIVER_DATA_VEH_TURNING_INDICATOR =

 left = 1, right = -1, none = 0, both = 2

 (non-zero only if set in the last time step from this DLL)

Set DRIVER_DATA_VEH_CATEGORY =

 car = 1, truck = 2, bus = 3, tram = 4, pedestrian = 5, bike = 6

Set DRIVER_DATA_VEH_COLOR =

 vehicle color (24 bit RGB value)

Set DRIVER_DATA_VEH_PREFERRED_REL_LANE =

 desired direction of a lane change because of a downstream connector

 of the vehicle's route or path or because of the right-side/left-side rule,

 positive = left, 0 = current lane, negative = right

Set DRIVER_DATA_VEH_USE_PREFERRED_LANE =

 0 = only preferable (e.g. European highway with right-side rule),

 1 = necessary (e.g. before a connector)

 PTV Vissim DriverModel DLL - Interface Documentation Commands

 © 2017 PTV AG Page 8

Set DRIVER_DATA_VEH_DESIRED_VELOCITY =

 desired speed [m/s]

Set DRIVER_DATA_VEH_X_COORDINATE =

 world coordinate X (vehicle front end)

Set DRIVER_DATA_VEH_Y_COORDINATE =

 world coordinate Y (vehicle front end)

Set DRIVER_DATA_VEH_Z_COORDINATE =

 world coordinate Z (vehicle front end), optional

 (calculated correctly only if 3D visualization or a vehicle record

 containing "Coordinate front" or "Coordinate rear" is active)

Set DRIVER_DATA_VEH_REAR_X_COORDINATE =

 world coordinate X (vehicle rear end), optional

Set DRIVER_DATA_VEH_REAR_Y_COORDINATE =

 world coordinate Y (vehicle rear end), optional

Set DRIVER_DATA_VEH_REAR_Z_COORDINATE =

 world coordinate Z (vehicle rear end), optional

 (calculated correctly only if 3D visualization or a vehicle record

 containing "Coordinate front" or "Coordinate rear" is active)

Set DRIVER_DATA_VEH_TYPE =

 vehicle type number (user defined)

Set DRIVER_DATA_VEH_CURRENT_LINK =

 current link number, optional

Only if DriverModelSetValue (DRIVER_DATA_VEH_CURRENT_LINK) returned 1:

For each link in the vehicle’s route/path:
Set DRIVER_DATA_NEXT_LINKS =

 link number, optional

Set DRIVER_DATA_VEH_ACTIVE_LANE_CHANGE =

 direction of an active lane change movement

 (+1 = to the left, 0 = none, -1 = to the right), optional

Set DRIVER_DATA_VEH_REL_TARGET_LANE =

 target lange (+1 = next one left, 0 = current lane, -1 = next one right), optional

Set DRIVER_DATA_VEH_INTAC_STATE =

 interaction state as determined by the internal car following model
 (sent only if DRIVER_DATA_WANTS_SUGGESTION has been set!):

 FREE = 1, CLOSEUP = 2, FOLLOW = 3, BRAKEAX = 4,

 BRAKEBX = 5,BRAKEZX = 6, BRAKESPW = 7, BRAKEKOOP = 8,

 PELOPS = 9,PASS = 10, SLEEP = 11, DWELL = 12; optional

Set DRIVER_DATA_VEH_INTAC_TARGET_TYPE =

 type of the relevant interaction target as determined by the internal car following
 model (sent only if DRIVER_DATA_WANTS_SUGGESTION has been set!):

 no target = 0, real vehicle = 1, signal head = 2, priority rule = 3, conflict area = 4,

 reduced speed area = 5, stop sign = 6, parking lot = 7, PT stop = 8; optional

Set DRIVER_DATA_VEH_INTAC_TARGET_ID =

 number of the relevant interaction target as determined by the internal car following
 model (sent only if DRIVER_DATA_WANTS_SUGGESTION has been set!); optional

 PTV Vissim DriverModel DLL - Interface Documentation Commands

 © 2017 PTV AG Page 9

Set DRIVER_DATA_VEH_INTAC_HEADWAY =

 distance to the relevant interaction target as determined by the internal car following

 model [m], front bumper to front bumper, including length of leading vehicle
 (sent only if DRIVER_DATA_WANTS_SUGGESTION has been set!); optional

For each user-defined attribute for vehicles in Vissim which has been selected in the Init step

(key of the UDA passed in index1):

Set DRIVER_DATA_DRIVER_DATA_VEH_UDA =

 value of that user-defined attribute (bool passed as long (0 or 1),

 all floating point types passed as double [in their currently selected unit]), optional

Data of the nearby vehicles

For each nearby vehicle (up to two each downstream and upstream, on up to 2 lanes

each on both sides and on the current lane) several values are passed from Vissim:

index1 and index2 are used as follows for DRIVER_DATA_NVEH_*:

index1 = relative lane: +2 = second lane to the left, +1 = next lane to the left,

 0 = current lane,

 -1 = next lane to the right, -2 = second lane to the right

 (exception for DRIVER_DATA_NVEH_UDA: index 1 = ID of the UDA!)

index2 = relative position: positive = downstream (+1 next, +2 second next, possibly more

 if DRIVER_DATA_WANTS_ALL_NVEHS is set)

 negative = upstream (-1 next, -2 second next, possibly more

 if DRIVER_DATA_WANTS_ALL_NVEHS is set)

First, for each index combination with index2 in {-2, -1, +1, +2} (the DLL needs to initialize further

index2 values itself) an initialization:

Set DRIVER_DATA_NVEH_ID = -1

Then, for each existing nearby vehicle the real data:

Set DRIVER_DATA_NVEH_ID =

 vehicle number

Set DRIVER_DATA_NVEH_LANE_ANGLE =

 angle relative to the middle of the lane [rad] (positive = turning left)

Set DRIVER_DATA_NVEH_LATERAL_POSITION =

 distance of the front end from the middle of the lane [m]

 (positive = left of the middle, negative = right)

Set DRIVER_DATA_NVEH_DISTANCE =

 gross distance [m] (front end to front end, negative = nveh is upstream)

Set DRIVER_DATA_NVEH_REL_VELOCITY =

 speed difference [m/s] (veh. speed - nveh. speed)

Set DRIVER_DATA_NVEH_ACCELERATION =

 current acceleration [m/s²]

Set DRIVER_DATA_NVEH_LENGTH =

 vehicle length [m]

Set DRIVER_DATA_NVEH_WIDTH =

 vehicle width [m]

Set DRIVER_DATA_NVEH_WEIGHT =

 vehicle weight [kg]

 PTV Vissim DriverModel DLL - Interface Documentation Commands

 © 2017 PTV AG Page 10

Set DRIVER_DATA_NVEH_TURNING_INDICATOR =

 left = 1, right = -1, none = 0, both = 2

 (non-zero only if set in the last time step from this DLL)

Set DRIVER_DATA_NVEH_CATEGORY =

 car = 1, truck = 2, bus = 3, tram = 4, pedestrian = 5, bike = 6

Set DRIVER_DATA_NVEH_LANE_CHANGE =

 direction of a current lane change (+1 = to the left, 0 = none, -1 = to the right)

Set DRIVER_DATA_NVEH_TYPE =

 number of the vehicle type in Vissim, optional

Set DRIVER_DATA_NVEH_X_COORDINATE =

 world coordinate X (vehicle front end), optional

Set DRIVER_DATA_NVEH_Y_COORDINATE =

 world coordinate Y (vehicle front end) , optional

Set DRIVER_DATA_NVEH_Z_COORDINATE =

 world coordinate Z (vehicle front end), optional

 (calculated correctly only if 3D visualization or a vehicle record

 containing "Coordinate front" or "Coordinate rear" is active)

Set DRIVER_DATA_NVEH_REAR_X_COORDINATE =

 world coordinate X (vehicle rear end), optional

Set DRIVER_DATA_NVEH_REAR_Y_COORDINATE =

 world coordinate Y (vehicle rear end), optional

Set DRIVER_DATA_NVEH_REAR_Z_COORDINATE =

 world coordinate Z (vehicle rear end), optional

 (calculated correctly only if 3D visualization or a vehicle record

 containing "Coordinate front" or "Coordinate rear" is active)

For each user-defined attribute for vehicles in Vissim which has been selected in the Init step

(key of the UDA passed in index1!):

Set DRIVER_DATA_DRIVER_DATA_NVEH_UDA =

 value of that user-defined attribute (bool passed as long (0 or 1),

 all floating point types passed as double [in their currently selected unit]), optional

Data of the current link

Set DRIVER_DATA_NO_OF_LANES =

 number of lanes of the link the vehicle is currently on

Data of all lanes of the current link of the subject vehicle

For each lane of the current link of the vehicle, several values are passed from Vissim:

For DRIVER_DATA_LANE_* index1 and index2 are used as follows:

index1 = lane number (rightmost = 1), index2 is irrelevant.

Set DRIVER_DATA_LANE_WIDTH =

 lane width [m]

Set DRIVER_DATA_LANE_END_DISTANCE =

 distance to end of lane [m] (can be emergency stop position before

 connector, negative = no end of lane in visibility range)

 PTV Vissim DriverModel DLL - Interface Documentation Commands

 © 2017 PTV AG Page 11

Data of the current lane

Set DRIVER_DATA_CURRENT_LANE_POLY_N =

 number of downstream lane polygon points within visibility distance

 along the route/path of the vehicle, optional

For each polygon point (index1 = 0..n-1):

Set DRIVER_DATA_CURRENT_LANE_POLY_X =

 X world coordinate of polygon point in the middle of the lane, optional

Set DRIVER_DATA_CURRENT_LANE_POLY_Y =

 Y world coordinate of polygon point in the middle of the lane, optional

Set DRIVER_DATA_CURRENT_LANE_POLY_Z =

 Z world coordinate of polygon point in the middle of the lane, optional

Data of the current and upcoming environment

Set DRIVER_DATA_RADIUS =

 current curve radius [m]

Set DRIVER_DATA_MIN_RADIUS =

 minimum curve radius [m] in visibility range

Set DRIVER_DATA_DIST_TO_MIN_RADIUS =

 distance [m] to spot of minimum curve radius

Set DRIVER_DATA_SLOPE =

 current slope (negative = drop)

Set DRIVER_DATA_SLOPE_AHEAD =

 slope at end of visibility range

Data of the next signal head or priority rule stop line

index1 = signal controller number / priority rule: zero,

index2 = signal head number / priority rule: number (before 8.00-10: zero)

Set DRIVER_DATA_SIGNAL_DISTANCE =

 distance [m] to next signal head or priority rule stop line (negative = none visible)

Set DRIVER_DATA_SIGNAL_STATE =

 red = 1, amber = 2, green = 3, red/amber = 4, amber flashing = 5, off = 6,

 other = 0 / priority rule (since 8.00-10): blocked = 1, free = 3

Set DRIVER_DATA_SIGNAL_STATE_START =

 simulation time [s] when signal changed to current state / priority rule: zero

Data of the next reduced speed area or previous desired speed decision

Set DRIVER_DATA_SPEED_LIMIT_DISTANCE =

 distance [m] to "speed limit sign" (reduced speed area: real distance,

 desired speed decision: 1.0 m when just passed, negative: no sign visible)

Set DRIVER_DATA_SPEED_LIMIT_VALUE =

 speed limit [km/h] (0 = end of reduced speed area)

 PTV Vissim DriverModel DLL - Interface Documentation Commands

 © 2017 PTV AG Page 12

Behavior data suggested for the current time step by Vissim’s internal model
These values are passed only if *long_value has been set to 1 in the call of

DriverModelGetValue (DRIVER_DATA_WANTS_SUGGESTION).

Set DRIVER_DATA_DESIRED_ACCELERATION =

 desired acceleration [m/s²] in this time step

Set DRIVER_DATA_DESIRED_LANE_ANGLE =

 desired angle relative to the middle of the lane [rad] (positive = turning left)

Set DRIVER_DATA_ACTIVE_LANE_CHANGE =

 direction of an active lane change movement (+1 = to the left, 0 = none,

 -1 = to the right, must be != 0 while lane change is not completed,

 will be used for NVEH_LANE_CHANGE seen from other vehicles)

Set DRIVER_DATA_REL_TARGET_LANE =

 target lane (+1 = next one left, 0 = current lane, -1 = next one right)

Execute Move Command

Execute DRIVER_COMMAND_MOVE_DRIVER

Pass new data calculated by the behavior model in the DLL back to Vissim

Get DRIVER_DATA_VEH_TURNING_INDICATOR =

 left = 1, right = -1, none = 0, both = 2

 (can be set by the DLL to make the ego vehicle in Vissim show a blinker (in the

 visualization) and to allow other vehicles to see that active blinker when they check
 DRIVER_DATA_NVEH_TURNING_INDICATOR)

Get DRIVER_DATA_VEH_DESIRED_VELOCITY =

 desired speed [m/s]

Get DRIVER_DATA_VEH_COLOR =

 vehicle color (24 bit RGB value)

Get DRIVER_DATA_USE_INTERNAL_MODEL =

 use the values passed from the driver model DLL = 0,

 use Vissim's internal model for this time step = 1
 (1 is only possible if DRIVER_DATA_WANTS_SUGGESTION has been set!), optional

Only if *long_value has been set to 0 in the call of DriverModelGetValue

(DRIVER_DATA_USE_INTERNAL_MODEL):

Get DRIVER_DATA_DESIRED_ACCELERATION =

 new acceleration [m/s²], optional

 [This value is limited by Vissim to the minimum of desired acceleration and

 maximum acceleration and to the maximum deceleration for the vehicle at

 the current speed. It is not affected by the limitation of the change of acceleration

 which is used in the internal car following model. If this value is set, Vissim

 shows the interaction state of the vehicle as “PELOPS” in the vehicle record.]

 PTV Vissim DriverModel DLL - Interface Documentation Commands

 © 2017 PTV AG Page 13

Get DRIVER_DATA_DESIRED_LANE_ANGLE =

 desired angle relative to the middle of the lane [rad] (positive = turning left),

 optional
 [If *long_value was set to 1 in the call of

 DriverModelGetValue (DRIVER_DATA_SIMPLE_LANECHANGE)

 this angle does not need to be calculated by the DLL and the return value of
 DriverModelGetValue(DRIVER_DATA_DESIRED_LANE_ANGLE)

 should be zero.]

Get DRIVER_DATA_ACTIVE_LANE_CHANGE =

 direction of an active lane change movement (+1 = to the left, 0 = none,

 -1 = to the right, must be != 0 while lane change is not completed)
 [If *long_value was set to 1 in the call of

 DriverModelGetValue (DRIVER_DATA_SIMPLE_LANECHANGE)

 setting this and DRIVER_DATA_REL_TARGET_LANE to +1 or -1 is

 sufficient to start a lane change which will be completed automatically by

 Vissim.]

Get DRIVER_DATA_REL_TARGET_LANE =

 target lane (+1 = next one left, 0 = current lane, -1 = next one right)
 [This is used by Vissim only if *long_value was set to 0 in the call of

 DriverModelGetValue (DRIVER_DATA_SIMPLE_LANECHANGE).]

Regardless of DRIVER_DATA_USE_INTERNAL_MODEL:

For each user-defined attribute for vehicles in Vissim which has been selected in the Init step

(key of the UDA passed in index1!):

Get DRIVER_DATA_DRIVER_DATA_VEH_UDA =

 value of that user-defined attribute (bool passed as long (0 or 1),

 all floating point types passed as double [in their currently selected unit]), optional

3.4 KillDriver

DriverModelExecuteCommand (DRIVER_COMMAND_KILL_DRIVER) is called from

Vissim when a vehicle reaches its destination and thus leaves the network (so memory which the

DLL might have allocated for that vehicle can be freed):

Set DRIVER_DATA_VEH_ID =

 ID of the vehicle to be killed

Execute DRIVER_COMMAND_KILL_DRIVER

 PTV Vissim DriverModel DLL - Interface Documentation Commands

 © 2017 PTV AG Page 14

4 Lane Change

The driver model DLL interface provides 2 different ways to control lane changes of vehicles

affected by the external dll:

► Simple lane change

► Full control over the lane change

If simple lane change is selected, the driver model DLL only needs to initiate a lane change for a

vehicle. Vissim assumes control of the lateral behavior of this vehicle while the lane change

proceeds and informs the driver model DLL when it is done.

Without simple lane change the driver model DLL has full control of the vehicle and manages the

lane change on its own – the driver model DLL must inform Vissim about the current state of the

vehicle.

How lane changes are actually handled is determined by the data types
DRIVER_DATA_SIMPLE_LANECHANGE and DRIVER_DATA_WANTS_SUGGESTION.

The lane change itself involves the data types DRIVER_DATA_VEH_ACTIVE_LANE_CHANGE,

DRIVER_DATA_VEH_REL_TARGET_LANE, DRIVER_DATA_ACTIVE_LANE_CHANGE,

DRIVER_DATA_REL_TARGET_LANE and DRIVER_DATA_DESIRED_LANE_ANGLE.

4.1 Simple lane change - handled by Vissim

This mode is chosen by setting *long_value to 1 as result of Vissim’s initial request for
DRIVER_DATA_SIMPLE_LANECHANGE.

If the driver model sets *long_value to 1 as result for DRIVER_DATA_WANTS_SUGGESTION

as well, Vissim will send a suggestion whenever it detects that a lane change is necessary.
As long as the driver model sets *long_value to 1 as result of Vissim’s requests for

DRIVER_DATA_USE_INTERNAL_MODEL, Vissim has complete control of lane changes.

A lane change can be initiated from the driver model DLL the following way:

1. The driver model sets DRIVER_DATA_ACTIVE_LANE_CHANGE to 1 (to the left) or -1 (to

the right).

2. Vissim starts the lane changing mode for the current vehicle. While in this mode, the vehicle
ignores the values sent from the DLL for DRIVER_DATA_ACTIVE_LANE_CHANGE,

DRIVER_DATA_REL_TARGET_LANE and DRIVER_DATA_DESIRED_LANE_ANGLE.

(The DLL must still return 1 from the DriverModelGetValue calls for these types!)

3. Vissim sets DRIVER_DATA_VEH_REL_TARGET_LANE, DRIVER_DATA_VEH_LANE and

DRIVER_DATA_VEH_LANE_ANGLE while in lane changing mode.

(DRIVER_DATA_VEH_REL_TARGET_LANE is set to zero when the middle of the front end

of the vehicle has reached the target lane, and DRIVER_DATA_VEH_LANE is set to the

new lane at this time, too.)

4. When Vissim has finished the lane change (i.e. when the whole width of the vehicle is on the
new lane), it sends 0 as value of DRIVER_DATA_VEH_ACTIVE_LANE_CHANGE. (This

does not necessarily mean that the vehicle has reached its desired lateral position within the

destination lane.)

 PTV Vissim DriverModel DLL - Interface Documentation Multithreading

 © 2017 PTV AG Page 15

Hints:

► A current lane change cannot be interrupted when in simple lane change mode.

► Do not send back Vissim’s suggestions for DRIVER_DATA_DESIRED_LANE_ANGLE while

no lane change is currently active, instead, return zero from
DriverModelGetValue(DRIVER_DATA_DESIRED_LANE_ANGLE).

4.2 Lane change - handled by the driver model DLL

This mode is chosen by setting *long_value to 0 as result of Vissim’s initial request for
DRIVER_DATA_SIMPLE_LANECHANGE.

A lane change can be executed by the driver model DLL the following way:

1. The driver model DLL sets DRIVER_DATA_ACTIVE_LANE_CHANGE,

DRIVER_DATA_REL_TARGET_LANE and DRIVER_DATA_DESIRED_LANE_ANGLE to

the desired values.

2. Vissim moves the vehicle according to these values and sets
DRIVER_DATA_VEH_REL_TARGET_LANE to zero when the middle of the front end of the

vehicle has reached the target lane and sets DRIVER_DATA_VEH_LANE to the new lane

number at this time, too.

(If there is no new lane on this side, Vissim sets the vehicle back to the middle of the old lane
and stops the lane change itself, setting DRIVER_DATA_ACTIVE_LANE_CHANGE and

DRIVER_DATA_DESIRED_LANE_ANGLE to zero.)

3. The driver model DLL has to determine itself when the lane change is over – it has to reset
the values for DRIVER_DATA_ACTIVE_LANE_CHANGE and

DRIVER_DATA_DESIRED_LANE_ANGLE to zero.

Hints:

► The driver model has full control in this mode – it can even interrupt a current lane change.

► Vissim does not finish a lane change on its own in this mode. This means that the vehicle will

continue moving laterally even beyond the next lane if the driver model does not stop the lane

change.

5 Multithreading

If multiple cores are used for a simulation run, vehicles on different Vissim links can be handled by

different threads. The assignment of links to these threads can be different in each time step. The

DLL functions are called during one time step in a non-deterministic sequence from multiple

threads, i.e. possibly alternating and overlapping for different subject vehicles. So the data can only

be assigned correctly if thread-local storage is used (instead of global variables which are fine for

singlethreaded use) or if there is only one subject vehicle (using that DLL) or if all subject vehicles

are on the same link.

PTV VISSIM API

DRIVING SIMULATOR INTERFACE

PTV Vissim API - Driving Simulator Interface Imprint

© 2017 PTV AG page 2

Imprint

This documentation is based on Vissim 10.00-01.

© 2017

PTV Planung Transport Verkehr AG

Haid-und-Neu-Str. 15

D-76131 Karlsruhe, Germany

Tel.: +49 (0)721-9651-0

Fax: +49 (0)721-9651-699

info@ptvgroup.com

www.ptvgroup.com

Disclaimer

PTV Vissim is a trademark of PTV AG.

All brand or product names in this documentation are trademarks or registered trademarks
of the corresponding companies or organizations. All rights reserved.

The information contained in this document is subject to change without prior notice and
should not be construed as a commitment on the part of the vendor.

This document may not be used for any other purpose than the personal use of the trainee.
No part of this documentation may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronically, mechanically, by photocopying,
recording or otherwise, edited or translated, except as permitted under the terms of the
copyright, without the prior written permission of PTV AG.

Limited Warranty

Although this documentation was compiled with great care, we cannot guarantee for its
correctness. We are thankful for hints on errors or shortcomings.

http://www.ptvgroup.com/

PTV Vissim API - Driving Simulator Interface Contents

© 2017 PTV AG page 3

Contents

1 Introduction 4

2 Architecture 5

3 DLL Interface Details 6

4 Using the DLL 11

5 Examples 12

5.1 DrivingSimulatortextClient 12

5.2 Unity 12

PTV Vissim API - Driving Simulator Interface Introduction

© 2017 PTV AG page 4

1 Introduction

The PTV Vissim add-on module "Driving Simulator Interface" allows to connect Vissim to a
driving (cycling, walking) simulator (DS). That DS can either be simulator hardware used by
a human or a piece of software representing the algorithms of an autonomous vehicle (or
multiple vehicles).

Vissim provides the surrounding traffic (vehicles, bicycles, pedestrians) to be visualized in
the DS, and the DS passes back the current position and orientation of the simulator
vehicle(s) (bicycle(s) / pedestrian(s)). The vehicles and pedestrians in the Vissim network
react to this simulator data as to all other vehicles and pedestrians in the microscopic
simulation model. In addition, Vissim passes traffic signal states to the DS for visualization,
and the DS can set detectors in Vissim explicitly in order to affect the signalization.

The DS does not need to know the Vissim data model where the network is modeled from
links, connectors, areas, ramps and obstacles. The DS needs to have its own world model
(for simulation and visualization). As all vehicle and pedestrian positions are exchanged in
cartesian world coordinates (x/y/z), the DS must be able to provide/use such coordinates,
and the coordinates of the networks on both sides (Vissim / DS) must match precisely.

Modifications since Vissim 10.00-00 are highlighted like this in this document.

PTV Vissim API - Driving Simulator Interface Architecture

© 2017 PTV AG page 5

2 Architecture

The DS software must connect to a Windows DLL provided by PTV. This DLL communi-
cates with a Vissim instance on the same computer through shared memory. If the DS
software doesn't run on Windows, it needs to connect to a Windows application to be built by
the user through sockets or any other means of process communication.

The start of the Vissim instance is triggered through a function call from the DLL, with the
desired Vissim version and the network file name to be loaded as parameters. Additional
optional parameters allow to set the frequency of the simulator, a visibility radius, the
maximum number of data sets for vehicles, pedestrians, signal groups and detectors to be
passed in one or both directions. Vissim is started through the COM interface, so it needs to
be registered as COM server. In the Vissim network settings, the option "driving simulator"
needs to be activated, and a vehicle type must be selected to be used for the DS vehicles.
After loading the network, Vissim establishes the communication to the DLL and waits for
the starting location of the DS vehicle (in world coordinates, fitting with the Vissim network)
to be passed from the DLL.

Vissim determines the most probable location for the DS vehicle in the Vissim network by
selecting from all links at the passed world coordinates the link with the driving direction
closest to the orientation of the DS vehicle. After the vehicle has been placed at that location
in the Vissim model, the first time step of the Vissim simulation is executed. After that time
step, Vissim passes the world coordinates of all vehicles in the network (except the DS
vehicle) to the DLL and waits for the new location of the DS vehicle. The simulator can now
read the new locations of the Vissim vehicles, visualize them and then pass back the new
location of the DS vehicle. After this, Vissim immediately calculates the next time step, and
so on.

Before the DS passes the new location of the simulator vehicle to Vissim, it can optionally
set detector states. Before or after retrieving the new locations of the Vissim vehicles, the
DS can optionally retrieve the signal states passed from Vissim and/or a list of all vehicles
which have entered the Vissim network in this time step, a list of all vehicles which have left
the Vissim network in this time step and a list of all vehicles which have changed their
location in this time step.

This data exchange between Vissim and the DS must be executed at least once per Vissim
simulation time step. If the simulator runs at a higher frequency (frame rate) than Vissim, the
interface provides automatic interpolation of the positions of the Vissim vehicles and
pedestrians between Vissim simulation time steps.

The timing of the co-simulation is controlled by the DS. It can run faster than real time (if this
is possible for the DS) but not faster than a stand-alone Vissim simulation of the same
network. (The Vissim simulation of a time step can take much less or much more than real
time, depending on the used hardware and the size of the network. A big network might not
be possible to be simulated with very short time steps in real time.) The simulation speed in
Vissim needs to be set to “maximum”, and the visualization in Vissim should be switched off
in order to achieve the highest possible simulation speed. The DS can slow down the co-
simulation as much as it requires (usually to exactly real time) without hurting the Vissim
simulation at all.

PTV Vissim API - Driving Simulator Interface DLL Interface Details

© 2017 PTV AG page 6

3 DLL Interface Details

These functions and data types are provided by this DLL:

bool VISSIM_Connect (unsigned short versionNo,
 wchar_t const *networkFileName,
 unsigned short simulatorFrequency = 10,
 double visibilityRadius = -1.0,
 unsigned short maxSimulatorVeh = 1000,
 unsigned short maxSimulatorPed = 1000,
 unsigned short maxSimulatorDet = 100,
 unsigned short maxVissimVeh = 1000,
 unsigned short maxVissimPed = 1000,
 unsigned short maxVissimSigGrp = 1000);

/* Establishes a connection between the DLL and a GUI version of Vissim.
This starts Vissim and passes the global data handles for the shared memory to Vissim.
Returns true upon success, else false.

 unsigned short versionNo is the Vissim version to be used, e.g. 1000 for Vissim 10.
 wchar_t const* networkFileName is the .inpx Vissim traffic network filename to start Vissim with.

 Optional parameters:
 unsigned short simulatorFrequency is the frequency of the simulator (frames/sec).
 double visibilityRadius is the maximum distance of a Vissim veh/ped from a simulator

veh/ped to be seen by the simulator (<= 0 means unlimited radius).
 unsigned short maxSimulatorVeh is the maximum number of simulator vehicles

(to be passed to Vissim).
 unsigned short maxSimulatorPed is the maximum number of simulator pedestrians

(to be passed to Vissim).
 unsigned short maxSimulatorDet is the maximum number of simulator detector impulses

(to be passed to Vissim).
 unsigned short maxVissimVeh is the maximum number of Vissim vehicles

(to be passed to the simulator).
 unsigned short maxVissimPed is the maximum number of Vissim pedestrians

(to be passed to the simulator).
 unsigned short maxVissimSigGrp is the maximum number of Vissim signal groups

(to be passed to the simulator). */

bool VISSIM_ConnectToConsole (wchar_t const *consoleFileName,
 wchar_t const *networkFileName,
 unsigned short simulatorFrequency = 10,
 double visibilityRadius = -1.0,
 unsigned short maxSimulatorVeh = 1000,
 unsigned short maxSimulatorPed = 1000,
 unsigned short maxSimulatorDet = 100,
 unsigned short maxVissimVeh = 1000,
 unsigned short maxVissimPed = 1000,
 unsigned short maxVissimSigGrp = 1000);

/* Establishes a connection between the DLL and a console version of Vissim.
This starts Vissim and passes the global data handles for the shared memory to Vissim.
Returns true upon success, else false.

 string* consoleFileName is the location where the console version can be found.
 string* networkFileName is the .inpx Vissim traffic network filename to start Vissim with.

 Optional parameters: see above for VISSIM_Connect(). */

PTV Vissim API - Driving Simulator Interface DLL Interface Details

© 2017 PTV AG page 7

bool VISSIM_Disconnect (void);

/* Stops the simulation run in Vissim, closes Vissim and disconnects the DLL from Vissim.

Returns true upon success, else false. */

struct Simulator_Veh_Data {
 double Position_X; /* front center of the vehicle in m */
 double Position_Y; /* front center of the vehicle in m */
 double Position_Z; /* front center of the vehicle in m */
 double Orient_Heading; /* in radians,
 eastbound = zero, northbound = +Pi/2 */
 double Orient_Pitch; /* in radians, uphill = positive */
 double Speed; /* in m/s */
};

bool VISSIM_SetDriverVehicles (int Num_Vehicles, Simulator_Veh_Data *VehicleData);

/* To be called once per simulator frame if there are no simulator pedestrians (only vehicles).

VehicleData[0] to VehicleData[Num_Vehicles - 1] are passed from the DLL to Vissim.
Vissim starts the calculation of the next time step immediately after receipt of this call.
Num_Vehicles must be in [0..maxSimulatorVeh] – if it is zero, no simulator vehicle data is
passed. Returns true upon success, else false. */

struct Simulator_Ped_Data {
 double Position_X; /* in m */
 double Position_Y; /* in m */
 double Position_Z; /* in m */
 double Orient_Heading; /* in radians */
 double DistanceSinceBirth; /* in m */
 double Speed; /* in m/s */
};

bool VISSIM_SetDriverPedestrians (int Num_Pedestrians,
 Simulator_Ped_Data *PedestrianData);

/* To be called once per simulator frame if there are no simulator vehicles (only pedestrians).

PedestrianData[0] to PedestrianData[Num_Vehicles - 1] are passed to Vissim.
Vissim starts the calculation of the next time step immediately after receipt of this call.
Num_Pedestrians must be in [0..maxSimulatorPed] – if it is zero, no simulator pedestrian data is
passed. Returns true upon success, else false. */

bool VISSIM_SetDriverVehiclesAndPedestrians (int Num_Vehicles,
 Simulator_Veh_Data *VehicleData,
 int Num_Pedestrians,
 Simulator_Ped_Data *PedestrianData);

/* To be called once per simulator frame if there are simulator vehicles and simulator pedestrians.
VehicleData[0] to VehicleData[Num_Vehicles - 1] and PedestrianData[0] to
PedestrianData[Num_Vehicles - 1] are passed to Vissim.
Vissim starts the calculation of the next time step immediately after receipt of this call.
Num_Vehicles must be in [0..maxSimulatorVeh] and Num_Pedestrians in [0.. maxSimulatorPed]
– if a value is zero, no simulator vehicle data respectively pedestrian data is passed.
Returns true upon success, else false. */

PTV Vissim API - Driving Simulator Interface DLL Interface Details

© 2017 PTV AG page 8

bool VISSIM_SetDetection (long DetectorID, long ControllerID);

/* Can be called before the call of VISSIM_SetDriverVehicles(), VISSIM_SetPedestrians() or

VISSIM_SetDriverVehiclesAndPedestrians().
Causes the Vissim detector <DetectorID> of the controller <ControllerID> to behave as if a vehicle
or pedestrian arrives on the detector during the next time step and leaves the detector during the
subsequent time step. Returns true upon success, else false. */

bool VISSIM_DataReady ();

/* Can be called to determine if Vissim has completed the calculation of the time step (return value =

true) or not yet (return value false). Does not block. */

#define NAME_MAX_LENGTH 100

struct VISSIM_Veh_Data {
 long VehicleID;
 long VehicleType; /* vehicle type number from Vissim */
 char ModelFileName[NAME_MAX_LENGTH]; /* .v3d */
 long color; /* RGB */
 double Position_X; /* front center of the vehicle in m */
 double Position_Y; /* front center of the vehicle in m */
 double Position_Z; /* front center of the vehicle in m */
 double Orient_Heading; /* in radians,
 eastbound = zero, northbound = +Pi/2 */
 double Orient_Pitch; /* in radians, uphill = positive */
 double Speed; /* in m/s */
 long LeadingVehicleID; /* relevant vehicle in front */
 long TrailingVehicleID; /* next vehicle back on the same lane */
 long LinkID; /* Vissim link attribute “Number” */
 char LinkName[NAME_MAX_LENGTH]; /* empty if “Name” not set in Vissim */
 double LinkCoordinate; /* in m */
 int LaneIndex; /* 0 = rightmost */
 int TurningIndicator; /* 1 = left, 0 = none, -1 = right */
 long PreviousIndex; /* for interpolation: index in the array
 in the previous Vissim time step,
 < 0 = new in the visibility area */
};

VISSIM_GetTrafficVehicles (int *Num_Vehicles, VISSIM_Veh_Data **VehicleData);

/* To be called once per simulator frame in order to get new data of Vissim vehicles.
*Num_Vehicles is set to the number of all Vissim vehicles (excluding simulator vehicle(s))
in the network; (*VehicleData)[0] to (*VehicleData)[*Num_Vehicles - 1] contain their data.
Doesn’t block after VISSIM_DataReady() has returned true.
Blocks while the calculation of the time step in Vissim hasn’t finished yet. */

PTV Vissim API - Driving Simulator Interface DLL Interface Details

© 2017 PTV AG page 9

struct VISSIM_Ped_Data {
 long PedestrianID;
 long PedestrianType; /* Vissim pedestrian type number */
 char ModelFileName[NAME_MAX_LENGTH]; /* *.v3d */
 double Length; /* in m */
 double Width; /* in m */
 double Height; /* in m */
 double Position_X; /* in m */
 double Position_Y; /* in m */
 double Position_Z; /* in m */
 double Orient_Heading; /* in radians */
 double Orient_Pitch; /* in radians */
 double DistanceSinceBirth; /* in m */
 double Speed; /* in m/s */
 Pedestrian_Motion_State_Type MotionState; /* see header file */
 Pedestrian_Construction_Element_Type ConstructionElementType;
 /* see header file */
 long ConstructionElementID; /* the construction element the
 pedestrian is currently on */
 char ConstructionElementName[NAME_MAX_LENGTH];
 /* empty if not set in Vissim */
 long PreviousIndex; /* for interpolation: index in the
 array in the previous Vissim time step, < 0 = new in the visibility area */
};

VISSIM_GetTrafficPedestrians (int *Num_Pedestrians,
 VISSIM_Ped_Data **PedestrianData);

/* To be called once per simulator frame in order to get new data of Vissim pedestrians.
*Num_Pedestrians is set to the number of all Vissim pedestrians (excluding simulator pedestrian(s))
in the network; (*PedestrianData)[0] to (*PedestrianData)[*Num_Pedestrians - 1] contain their data.
Doesn’t block after VISSIM_DataReady() has returned true.
Blocks while the calculation of the time step in Vissim hasn’t finished yet. */

VISSIM_GetVehicleLists (int *NumNewVehicles, long **NewVehicleIds,
 long **NewVehicleTypes, int *NumMovedVehicles,
 long **MovedVehicleIds, int *NumDeletedVehicles,
 long **DeletedVehicleIds);

/* Can be called once per simulator frame in order to get filtered lists of Vissim vehicle numbers.
*NumNewVehicles is set to the number of new Vissim vehicles created in the last time step,
(*NewVehicleIds)[0] to (*NewVehicleIds)[NumNewVehicles - 1] contain their IDs,
(*NewVehicleTypes)[0] to (*NewVehicleTypes)[NumNewVehicles - 1] contain their vehicle type
numbers;
*NumMovedVehicles is set to the number of Vissim vehicles that have moved in the last time step,
(*MovedVehicleIds)[0] to (*MovedVehicleIds)[NumMovedVehicles - 1] contain their IDs,
*NumDeletedVehicles is set to the number of Vissim vehicles that have been deleted in the last
time step,
(*DeletedVehicleIds)[0] to (*DeletedVehicleIds)[NumDeletedVehicles - 1] contain their IDs.
Doesn’t block after VISSIM_DataReady() has returned true. Might block before this. */

PTV Vissim API - Driving Simulator Interface DLL Interface Details

© 2017 PTV AG page 10

VISSIM_GetPedestrianLists (int *NumNewPedestrians, long **NewPedestrianIds,
 long **NewPedestrianTypes, int *NumMovedPedestrians,
 long **MovedPedestrianIds, int *NumDeletedPedestrians,
 long **DeletedPedestrianIds);

/* Can be called once per simulator frame in order to get filtered lists of Vissim pedestrian numbers.
*NumNewPedestrians is set to the number of new Vissim pedestrians created in the last time step,
(*NewPedestrianIds)[0] to (*NewPedestrianIds)[NumNewPedestrians - 1] contain their IDs,
(*NewPedestrianTypes)[0] to (*NewPedestrianTypes)[NumNewPedestrians - 1] contain their
pedestrian type numbers;
*NumMovedPedestrians is set to the number of Vissim pedestrians that have moved in the last time
step,
(*MovedPedestrianIds)[0] to (*MovedPedestrianIds)[NumMovedPedestrians - 1] contain their IDs,
*NumDeletedPedestrians is set to the number of Vissim pedestrians that have been deleted in the
last time step,
(*DeletedPedestrianIds)[0] to (*DeletedPedestrianIds)[NumDeletedPedestrians - 1] contain their
IDs.
Doesn’t block after VISSIM_DataReady() has returned true. Might block before this. */

struct VISSIM_Sig_Data {
 long ControllerID;
 long SignalGroupID;
 int SignalState; /* 1 = Red, 2 = Red+Amber, 3 = Green, 4 = Amber,
 5 = Off (black), 6 = Undefined, 7 = Flashing Amber,
 8 = Flashing Red, 9 = Flashing Green,
 10 = Alternating Red/Green, 11 = Green+Amber */
};

VISSIM_GetSignalStates (int *NumSignals,
 VISSIM_Sig_Data **SignalStateData);

/* Can be called once per simulator frame in order to get new data of Vissim signal groups.

Doesn’t block after VISSIM_DataReady() has returned true. Might block before this. */

If the simulator frequency is identical with the Vissim simulation resolution, the data passed
from Vissim through VISSIM_Get*() functions doesn’t need to be copied to a different
memory location before VISSIM_SetDriverVehicles() is called again because Vissim uses
two alternating buffers.

If the simulator frequency is a multiple of the Vissim simulation resolution, the interface uses
linear interpolation to estimate the position, orientation and speed values of the Vissim
vehicles/pedestrians between Vissim time steps. In this case, the same buffer is used for all
interpolation time steps (i.e. the pointer passed from a VISSIM_Get*() function stays the
same)! In the very first time step of a Vissim vehicle/pedestrian inside the network, there is
no interpolation (because a previous position is not available), so the position, orientation
and speed have constant values in all simulator frames.

PTV Vissim API - Driving Simulator Interface Using the DLL

© 2017 PTV AG page 11

4 Using the DLL

In order to use the provided DrivingSimulatorProxy.dll which contains the functions listed
above, a Windows program needs to be built which includes DrivingSimulatorProxy.h and is
linked with DrivingSimulatorProxy.lib in order to be able to call the functions from the DLL.
Two editions of the *.lib and *.dll files are provided, one each for a 32-bit and a 64-bit
program. Both have been built with the Platform Toolset Visual Studio 2013 (v120), so
Visual Studio 2013 or later can be used to build the simulator program.

PTV Vissim API - Driving Simulator Interface Examples

© 2017 PTV AG page 12

5 Examples

5.1 DrivingSimulatortextClient

A simple example "DrivingSimulatorTextClient" is provided with this API package, including
the example network file driving_simulator_test.inpx and some additional files:

This “simulator” is a Windows console application. It does not calculate vehicle positions nor
does it read actions from a human driver but it simply reads a vehicle record file of a single
vehicle (driving_simulator_test.fzp, originally produced by Vissim 5.30 in a normal simulation
run of the same network with 10 time steps per second) and sends the coordinates of that
vehicle (number 1) to Vissim, so the Vissim vehicles can react on the simulator vehicle. In
addition, this text client example reads a pedestrian record file of a single pedestrian
(driving_simulator_test.pp, originally produced by Vissim 10 in a normal simulation run of the
same network with 10 time steps per second) and sends the coordinates of that pedestrian
(number 1) to Vissim, so the Vissim pedestrians can react on the simulator pedestrian. (In
this example network, vehicles and pedestrians have no overlapping links, so they don’t
react on each other.)

In order to run this test client, the environment variable DRIVING_SIMULATOR_INTERFACE
must be set to the absolute path to the folder containing the example network file
driving_simulator_test.inpx. The client needs two command line parameters: first the desired
“simulator frequency” and second the desired visibility radius.
When you start the test client, it starts a new Vissim 10 instance through VISSIM_Connect()
(unless there is already a running Vissim instance which has been started with the command
line parameter -automation). This Vissim instance loads the network file and starts the
simulation run automatically. During the initialization of the simulation the
DrivingSimulatorProxy.dll tries to connect with Vissim. At the end of the vehicle record file,
the simulation run is stopped and Vissim is closed automatically.

5.2 Unity

A simple Unity application using the DrivingSimulatorProxy.dll for a co-simulation with Vissim
is provided in the subdirectory Unity\, including specific documentation.

	Imprint
	Contents
	1 General
	2 DLL Interface
	3 Commands
	3.1 Init
	3.2 CreateDriver
	3.3 MoveDriver
	3.3.1 Global data
	3.3.2 Vehicle specific data

	3.4 KillDriver

	4 Lane Change
	4.1 Simple lane change - handled by Vissim
	4.2 Lane change - handled by the driver model DLL

	5 Multithreading

