CoEXist

Deliverable 2.10

PTV Vissim extension – new features and improvements – final version

Version: 2.0 Date: 14.04.20 Author: Peter Sukennik, PTV Group

The sole responsibility for the content of this document lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the EASME nor the European Commission are responsible for any use that may be made of the information contained therein.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 723201

Document Control Page

Title		PTV Vissim extension – new features and improvements								
Creator		Peter	Sukennik (PTV Group)							
Editor		Char	Charlotte Fléchon (PTV Group)							
Reviewer/s		Char	Charlotte Fléchon (PTV Group)							
Brief Descript	tion	Deliv	erable 2.4							
Contributors		Luka	s Kautzsch (PTV Group)							
Type (Deliver	able/Milestone)	Deliv	erable							
Format										
Creation date)	04/20	020							
Version numb	Der	2.0								
Version date		14.04.2020								
Last modified	by	Charlotte Fléchon (PTV Group)								
Rights										
Audience		🗌 Internal								
		⊠ Public								
		Restricted, access granted to: EU Commission								
Action reques	sted	To be revised by Partners involved in the preparation of the Deliverable								
		🗌 Fo	or approval of the WP Manage	er						
		🗌 Fo	or approval of the Internal Rev	viewer (if required)						
		🗌 Fo	or approval of the Project Co-	ordinator						
Deadline for a	approval									
Version	Date		Modified by	Comments						
2.0 14.04.2020			Peter Sukennik (PTV Group)	 D2.4 completed with: Built-in platooning feature Lane-specific driving behaviour 						

2.0	14.04.2020	Charlotte Fléchon (PTV Group)	Review
-----	------------	----------------------------------	--------

Table of contents

1	Introduction	;
1.1	PTV Vissim version	5
1.2	Knowledge transfer	5
1.3	Driving logics	5
1.4	Cooperation & communication functions of AVs	7
2	API improvements7	,
2.1	Drivermodel.dll	7
2.2	Drivingsimulator.dll	3
3	New features)
3.1	Enforce absolute braking distance)
3.2	Use implicit stochastics)
3.3	Class dependent safety distance in following behaviour10)
3.4	Number of interaction objects & vehicles11	
3.5	OpenDrive import	
3.6	Consider vehicles in dynamic potential12)
3.7	Zero passengers12)
3.8	Increased acceleration in following possible	}
3.9	Labels for vehicles	3
3.10	Built-in platooning feature	3
3.11	Lane-specific driving behaviour	Ł
4	Appendixes15	;

1 Introduction

This document describes new automated vehicle (AV) related features and improvements specifically in PTV Vissim software developed within the CoEXist project. This is an updated version of the deliverable D2.4 "*Vissim extension – new features and improvements*".

1.1 PTV Vissim version

All parameters or features mentioned below are available since PTV Vissim 11 release version (release date: October 2018) with the exception of the platooning feature (implemented into Vissim 2020, released in October 2019). Most of the API (application programming interface) improvements are available in PTV Vissim 10 version already. For consortium partners & CoEXist purposes, a development version was available since May 2018. A beta version of Vissim 11, available for all users with a valid Vissim 10 license, has been released at the beginning of August 2018.

1.2 Knowledge transfer

For an explanation of all new functionalities and AV-related how-to, following activities have been performed:

- A webinar was held on 21th June 2018. The slides of the webinar are in appendix A of this document. The recording of the webinar is available on YouTube: https://www.youtube.com/watch?v=C bougPNSw4
- An AV-related PTV Vissim guide was prepared in October 2018 (D2.5 "Guide for the simulation of AVs with microscopic modelling tool")
- An updated PTV Vissim manual was available (most of it) for the beta release of Vissim 11 (August 2018), a full update was available with the release version of PTV Vissim 11 (end of September 2018).
- A second webinar was held August 10, 2018 for American time zones within the US PTV Talks series and available online: <u>https://ptvtraffic.us/resources/ptvtalks-coexist/</u>
- An updated PTV Vissim manual was available with the release version of PTV Vissim 2020 (October 2019).
- A third webinar aimed on the platooning feature was held on 11th November 2019 and available online: <u>https://www.youtube.com/watch?v=Gbht_gZZHM8</u>.
- A second edition of the AV-related PTV Vissim guide was prepared in February 2020 (D2.11 "Guide for the simulation of AVs with microscopic modelling tool final")).
- A fourth webinar was held on March 12, 2020 for American time zones within the US PTV Talks series and available online: <u>https://ptvtraffic.us/resources/coexist-2/</u>.
- An online workshop was help within the CoEXist final event (online) on 26th March 2020 for registered participants and now available online: <u>https://www.youtube.com/watch?v=HL-</u> <u>NPQNsJV8</u>.

1.3 Driving logics

How to use individual features in combination with the driving logics¹ used within the CoEXist project is described in deliverable D2.3. This document describes what was developed and for what purpose.

¹ See D1.4 "Scenario specification for 8 use cases" and its appendix A

1.4 Cooperation & communication functions of AVs

Some implications of simple cooperation & communication functions of AVs might be simulated by using new features and appropriate settings in PTV Vissim. For modelling of complex cooperation & communication functions additional actions might be necessary – using one of the available interfaces (COM, drivermodel.dll or drivingsimulator.dll) to mimic complex communication and cooperation strategies.

2 API improvements

PTV Vissim offers three APIs. Two of them, described below, have been improved significantly. APIs can be used for:

- Simulating vehicles with own algorithms within PTV Vissim
- Connecting & exchanging information with an external simulator (e.g. a sensor simulator)
- Simulating communication & cooperation strategies or any other feature which is not directly available in the GUI of PTV Vissim

API are widely used by car manufacturers and researchers who are developing their own control algorithms. The use of API requires programming skills.

The full description of both mentioned PTV Vissim interfaces can be found in the documents delivered within PTV Vissim installation (see Appendix 1 and 2 of D2.2 "PTV Vissim API - Driver Model Interface.pdf" and "PTV Vissim API - Driving Simulator.pdf Interface").

2.1 Drivermodel.dll

The External Driver Model DLL Interface of Vissim provides the option to replace the internal driving behaviour by a fully user-defined behaviour for some or all vehicles in a simulation run. The user-defined algorithm must be implemented in a DLL written in C/C++ which contains specific functions (as specified below). During a simulation run, Vissim calls the DLL code for each affected vehicle in each simulation time step to determine the behaviour of the vehicle. Vissim passes the current state of the vehicle and its surroundings to the DLL and the DLL computes the acceleration / deceleration of the vehicle and the lateral behaviour (mainly for lane changes) and passes the updated state of the vehicle back to Vissim.

The external driver model can be activated for each vehicle type separately in the dialog box "Vehicle Type" by checking the checkbox "Use external driver model" on the tab page "External Driver Model" and selecting a driver model DLL file and optionally a parameter file to be used. If this option is checked, the driving behaviour of all vehicles of this vehicle type will be calculated by the selected DLL. A subdirectory DriverModelData\ must exist in the directory of vissim.exe in order to avoid a warning message when Vissim is started.

The following improvements have been implemented:

• External driver model DLLs may be used now in multithreaded simulation runs if all DLLs confirm that they support multithreading (unless there is only one externally controlled vehicle or all

externally controlled vehicles are on the same link, the DLL needs to be programmed accordingly, of course).

- If the DLL requests it, Vissim sends the data of all nearby vehicles that the ego vehicle sees according to the current driving behaviour (min./max. look ahead and look back distances, number of observed vehicles) instead of at most 2 for each upstream and downstream per lane.
- User-defined vehicle attribute values can be passed to the DLL and can be modified by the DLL.
- World coordinates of the front end and rear end of nearby vehicles are passed from Vissim to the DriverModel.DLL as well.
- The polyline of the current lane of the ego vehicle (along its route/path, within the visibility distance) is passed to the DLL as well.

2.2 Drivingsimulator.dll

The PTV Vissim add-on module "Driving Simulator Interface" allows to connect Vissim to a driving (cycling, walking) simulator (DS). That DS can either be a simulator hardware used by a human or a piece of software representing the algorithms of a CAV (or multiple CAVs).

Vissim provides the surrounding traffic (vehicles, bicycles, pedestrians) to be visualized in the DS, and the DS passes back the current position and orientation of the simulator vehicle(s) (bicycle(s) / pedestrian(s)). The vehicles and pedestrians in the Vissim network react to this simulator data as to all other vehicles and pedestrians in the microscopic simulation model. In addition, Vissim passes traffic signal states to the DS for visualization, and the DS can set detectors in Vissim explicitly in order to affect the signalization.

The DS does not need to know the Vissim data model where the network is modelled from links, connectors, areas, ramps and obstacles. The DS needs to have its own world model (for simulation and visualization). As all vehicle and pedestrian positions are exchanged in cartesian world coordinates (x/y/z), the DS must be able to provide/use such coordinates, and the coordinates of the networks on both sides (Vissim / DS) must match precisely.

The following improvements have been implemented:

- Automatic interpolation of Vissim vehicle/pedestrian world coordinates, orientations and speeds between Vissim time steps if the simulator informs Vissim about a higher frame rate than the Vissim simulation resolution in the call of VISSIM_Connect().
- Optionally, simulator pedestrians can be passed to Vissim now. The pedestrian type for those needs to be selected in the network settings on the new tab page "Driving simulator". The checkbox for activation of the driving simulator interface and the selection box for the vehicle type for simulator vehicles have been moved there as well.
- The maximum number of objects of each type to be exchanged between the simulator and Vissim can be set by the simulator in the call of VISSIM_Connect().
- The simulator can pass a maximum visibility radius to Vissim in the call of VISSIM_Connect(). Vissim vehicles and pedestrians will be passed to the simulator only if they are inside of this radius from the center of the front end of a simulator vehicle or pedestrian.

3 New features

3.1 Enforce absolute braking distance

Idea: the vehicle can stop safely anytime (without a crash), even if the leading vehicle stops instantly ("turns into brick wall"). This ensures that the brick wall stop distance is always kept.

It has implications for:

- Following behaviour
- Lane change behaviour
- Gap acceptance at intersections (conflict areas only)

👯 Driving Behavior	? ×	
No.: 3 Name: Freeway (free lane selection)		
Following Car following model Lane Change Lateral Signal Control Meso		
Look ahead distance		
Minimum: 0.00 m		
Maximum: 250.00 m		
Anzahl Interaktionsobjekte: 2		
Anzahl Interaktionsfahrzeuge: 99		
Look back distance		
Minimum: 0.00 m		
Maximum: 150.00 m		
Temporary lack of attention		
Duration: 0 s		
Probability: 0.00 %		
Smooth closeup behavior		
Standstill distance for static obstacles: 0.50 m		
Enforce absolute braking distance		following distance = braking distance + standstill dist.
Use implicit stochastics		
		(braking + standstill) distances
QK	<u>C</u> ancel	

Figure 1 Enforce absolute braking distance dialog (left) and an illustration (right)

3.2 Use implicit stochastics

Idea: the stochastic imperfection of human driving is replaced by deterministic machines & computers. If this attribute is false, a deterministic instead of a stochastically distributed value is used. Affected are the values that:

- cannot be influenced by user e.g. via an adjustable distribution
- are expected to be unaffected by human perception in AVs.

CoEXist

Driving Behavior		?	×
o.: 3 Name: Freeway (free lane selec	ction)		_
ollowing Car following model Lane Change Latera	I Signal Control Meso		
ook ahead distance			
Minimum: 0.00 m			
Maximum: 250.00 m			
Anzahl Interaktionsobjekte: 2			
Anzahl Interaktionsfahrzeuge: 99			
ook back distance			
Minimum: 0.00 m			
Maximum: 150.00 m			
emporary lack of attention			
Duration: 0 s			
Probability: 0.00 %			
Smooth closeup behavior			
] Standstill distance for static obstacles: 0.50 r	n		
] Enforce absolute braking distance ()			
Use implicit stochastics			
	QK	Car	ncel

Figure 2 Use implicit stochastics dialog (left) and illustrations (right)

3.3 Class dependent safety distance in following behaviour

Idea: the headway to the followed vehicle depends on the followed vehicle class.

This allows to set different following distances to conventional vehicles, automated vehicles, connected and automated vehicles, cyclists etc.

No.: 3 Nam	e: Freeway (f	ree lane selection)				?	×
Following Car following mo	del Lane Chi	ange Lateral Si	gnal Contro	I Meso			
Wiedemann 99							~
Model parameters							
CC0 (Standstill Distance):		1.50 m	CC5 (Pos	itive 'Following' Threshold):	0.35		
CC1 (Headway Time):		2: 0.9 s 🗸	CC6 (Spe	ed dependency of Oscillation	n): 11.44		
CC2 ('Following' Variation):		4.00 m	CC7 (Osc	illation Acceleration):	0.25 m/s2		
CC3 (Threshold for Entering	'Following'):	-8.00	CC8 (Star	ndstill Acceleration):	3.50 m/s2		
CC4 (Negative 'Following' T	hreshold):	-0.35	CC9 (Acc	eleration with 80 km/h):	1.50 m/s2		
Following behavior depend	ing on the lea	ding vehicle class					
Count: 3 VehClass	W74ax	W74	xAdd	W74bxMult 1	W99cc0	W99cc1Distr	
1 10: Car		2.00		2.00 3.00	1.50	2: 0.9 s	
2 20: HGV		2.00		2.00 3.00	1.50	2:0.9 s	
5 50. 505		/// £100	//////		1.50	2.0.95	
						QK Qa	incel

Figure 3 Vehicle class dependency in the dialog (left) and an illustration (right)

3.4 Number of interaction objects & vehicles

Idea: automated vehicles can see the signals ahead, but only one (or two...) vehicle in front of itself because the sensors cannot see through the leading vehicle.

R Driving Behavior	? ×	
No.: 3 Name: Freeway (free lane selection)		
Following Car following model Lane Change Lateral Signal Control Meso		
Look ahead distance		
Minimum: 0.00 m		
Maximum: 250.00 m		
Number of interaction objects 2		
Number of interaction vehicles 99		
Look back distance		
Minimum: 0.00 m		
Maximum: 150.00 m		
Temporary lack of attention		
Duration: 0 s		
Probability: 0.00 %		
Smooth closeup behavior		4 ^T .
Standstill distance for static obstacles: 0.50 m		
Enforce absolute braking distance		objects
Use implicit stochastics		vehicles
QK	Cancel	

Figure 4 Number of interaction objects & vehicles in the dialog (left) and an illustration (right)

3.5 OpenDrive import

OPEN DRIVE = open file format for the logical description of road networks. It was developed and is being maintained by a team of simulation professionals with large support from the simulation industry. Its first public appearance was on January 31, 2006. This feature allows to read opendrive database and create a network in PTV Vissim.

Figure 5 OpenDrive import in the menu and the typical usage of open drive (source: http://www.opendrive.org/)

3.6 Consider vehicles in dynamic potential

This feature improves the interaction between vehicles and pedestrians in crossing conflicts (e.g. on shared space areas). The pedestrians are able to find and use gaps between standing or slowly moving vehicles dynamically, so their behaviour is more intelligent and closer to the real behaviour.

🛃 Link			? ×	×	-
No.:	1 Name:]
Num. of lanes: 50	Streckenverhaltenstyp:	1: Urban (motorized)		\sim	
Link length: 12.783 r	n Display type:	21: Pedestrian area gray		~	
	Level:	1: Base		~	
Lanes Meso Pedestria	Area Display Others				
✓ Is pedestrian area					
Pedestrian Behavior				-	
Flächenverhaltenstyp			~		
Wunschgeschwindig	ceitsfaktor: 100.00 %				
Conflicts with vehicles	N			-	
Consider vehicles i	n dynamic potential				1
G für Fahrzeuge:	3.000				
-		OK	Cancel		
		<u>U</u> K			

Figure 6 Consider vehicles in dynamic potential in the dialog (left) and an illustration (right)

3.7 Zero passengers

Idea: Simply to allow "empty trips" for future autonomous vehicles (SAE automation level 4 & 5).

6 Occupancy Distribution	?	×
No.: 2 Name: Zero occupancy		
0.0		
	-	
	-	
	-	
	-	
	-	
0.00	- 0.00	
ОК	Cancel	

3.8 Increased acceleration in following possible

This new parameter allows to set higher acceleration in following process in order to "stay in touch" when the speed of the leading vehicle increases significantly. The ability to keep close following distance without big losses when leading vehicle accelerates was observed on the test track in Helmond (described in D2.6 Technical report on data collection and validation process). To mimic such behaviour in Vissim, this parameter can be set to value above 100% for specific vehicle class and also in dependency on leading vehicle class.

Driving	Beh	aviors / Vehicle Class Following Be	ahaviors												
Select layout 🔹 🌮 🕂 🛧 😒 🖞 🕯 🤹 Vehicle class following - 📾 🛢 💾 🐯 🌮 🔶 💱 🛧 Vehicle class following - 📾 🛢 💾 🐯															
Count:	5 N	lo Name	NumInteractObj	StandDistIsFix	StandDist	CarFollowModType	IncrsAccel	Count: 1	VehClass	W74ax	W74bxAdd	W74bxMult	W99cc0	W99cc1Distr	IncrsAccel
	1	1 Urban (motorized)	4		0.50	Wiedemann 74	100.0 %	1	10: Car	2.00	2.00	3.00	1.50	2: 0.9 s	100.0 %
	2	2 Right-side rule (motorized)	2		0.50	Wiedemann 99	100.0 %								
	3	3 Freeway (free lane selection)	2		0.50	Wiedemann 99 🗸	100.0 %								
	4	4 Footpath (no interaction)	2		0.50	No interaction	100.0 %								
	5	5 Cycle-Track (free overtaking)	2		0.50	Wiedemann 99	100.0 %								

Figure 8 Increased acceleration in the list & coupled list

3.9 Labels for vehicles

This feature allows to show any vehicle attribute as a vehicle label which is moving with the vehicle during 2D visualisation. This is useful for debugging or analysing the model, showing results etc.

Figure 9 Example of vehicle label showing following distance

3.10 Built-in platooning feature

Simplified platooning functionality configurable through PTV Vissim GUI has been developed and implemented into Vissim 2020 (released in October 2019). Platoon represents connected vehicles traveling very closely & safely together, also at high speeds. This feature in Vissim is suitable for evaluating the overall effects of platooning on the network. However, this feature is not suitable for obtaining specific vehicle data within the platoon (vehicle dynamics), for example, the calculated vehicle emissions of vehicles inside the platoon.

Figure 10 Vehicle in a platoon (dark blue = platoon leader, light blue = platoon member, black = not in a platoon)

Platooning feature can be activated on the tab "Autonomous driving" for each driving behaviour. This feature offers five parameters which are accessible through the dialog (see Figure 11**Fehler! Verweisquelle konnte nicht gefunden werden.**) or the list of driving behaviour. Because these parameters are part of a driving behaviour, they can change from one link or lane to another. That means a vehicle can use during the journey through the network different values for platooning parameters, because every link and every lane can use a specific link behaviour type.

	<i>n</i> ,					_
llowing Car following model Lane Change L	ateral Signal Control	Autonomous Driving	Driver Errors	Meso		
Enforce absolute braking distance (i)						
Use implicit stochastics						
atooning						_
Platooning possible						
Max. number of vehicles:	7					
Max. desired speed:	80,00 km/h					
Max. distance for catching up to a platoon:	250,00 m					
Gap time:	0,60 s					
Minimum clearance:	2,00 m					

Figure 11 Platooning activation & parameters

3.11 Lane-specific driving behaviour

It allows the user to define individual "link behaviour type" for each traffic lane, which means that vehicles can use different driving behaviour on each lane. This allows the user to activate some special driving behaviour/parameters only for selected lane(s) (e.g. for automated vehicles, automated pods, unmanned delivery vehicles or conventional vehicles). Link behaviour types for each lane can be set through the link dialog (shown in Figure 12) or a link list with the coupled list and selecting "lanes".

Link												?	×
No.:			1	Name									
Num. of	lanes: 3		•	Link b	ehavior type:	1: Urban (motorized)							~
Link leng	ith:	234,70	8 m	Displa	y type:	1: Road gray							~
				Level:		1: Base							~
Lanes	Meso	Pedest	rian Are	a Disp	olay Dyn. As	signment Others							
Coun	t: 3 Inde	x	Width	_	LinkBehavTy	pe		Blo	Dis	No	No	No	No
	1	1		3,50	3: Freeway (f	ree lane selection)					XX.		
	2	2		3,50	3: Freeway (f	ree lane selection)							
	3	3		3,50	6: Freeway (f	ree lane selection) - platooning allowed	\sim			XA/			
Has	overtaki	ing lane											
										<u>0</u> K		Ca	ncel

Figure 12 Link behaviour type for lanes in the link dialog

4 Appendixes

- Webinar I: PTV Vissim autonomous vehicles new features and how to
- Webinar II: CoEXist: Preparing the transition to automated vehicles
- Webinar III: New developments in PTV Vissim
- Webinar IV: CoEXist project & PTV Vissim

the mind of movement

Welcome to the Webinar

PTV VISSIM: AUTONOMOUS VEHICLES NEW FEATURES AND HOW-TO

Presenter:

Peter Sukennik

PTV Vissim Product Management PTV Group, Karlsruhe peter.sukennik@ptvgroup.com

www.ptvgroup.com

OVERVIEW

- 1. Explicit vs. implicit stochastics
- 2. New features related to AV
- 3. Driving behavior parameters for AV
- 4. How to deal with cooperation & communication

www.ptvgroup.com

Presenter:

Peter Sukennik

PTV Vissim Product Management PTV Group, Karlsruhe

Answering your questions: **Lukas Kautzsch** PTV Vissim Product Management PTV Group, Karlsruhe

www.ptvgroup.com

EXPLICIT STOCHASTICS

EXPLICIT STOCHASTICS - FUNCTIONS

Assumption: AVs accelerate/decelerate the same/very similar way

- Desired acceleration/deceleration
- Maximum acceleration/deceleration

• 5

EXPLICIT STOCHASTICS - DISTRIBUTIONS

Assumption: AVs will respect the speed limit and the spread will be minimized

- Desired speed
- Time

PTV GROUP

- Distance
- Occupancy

User-Defined Attributes Aliases	・ 多 開 hics SIO NA SA Corporation	
2D/3D Model Segments 2D/3D Models		
Functions	•	
Distributions	*	Desired Speed
Vehicle Types	Power	
Vehicle Classes	Weight	
Driving Behaviors	Time	
Link Behavior Types	Location	
Pedestrian Types	Distance	
Pedestrian Classes	Occupancy	
Walking Behaviors	2D/3D Model	
Area Behavior Types	Color	
Display Types	Frei	

NEW FEATURES

AV DRIVING LOGIC

Definition under CoExist project:

Rail safe

Cautious

Normal

"all knowing"

- Brick wall stop distance
- Big gaps
- Predefined route
- No lane change
- No unprotected signal phase
- Higher lateral distance or physical separation
- Mostly closed
 environment

PTV GROUP **COEXist**

- Brick wall stop distance
- Big gaps
- · Cautious behavior
- Gaps similar to human drivers but with higher safety
- Smaller gaps but still safe
- · Cooperative behavior
- Communication is a precondition

• 9

ENFORCE ABSOLUTE BRAKING DISTANCE

Idea: the vehicle can stop safely anytime (without a crash), even if the leading vehicle stops instantly ("turns into brick wall")

NUMBER OF INTERACTION VEHICLES

Vissim 10:

Number of observed vehicles

The following <u>network objects are modeled as vehicles in</u> Vissim. Vehicles treat these network objects as a preceding vehicle:

- Red signal heads
- Reduced Speed Areas
- Priority rules (if the minimum time gap or minimum headway condition is not met)

Vehicles also treat the following <u>network objects as a</u> <u>preceding vehicle</u> if they have to stop there:

- Stop Signs
- Public transport stops
- Parking Lots

Conflict areas behavior: A vehicle takes into consideration all conflict areas up to the n-th preceding vehicle (for n observed

Verine -9

PTV GROUP

interaction objects (up to max. look-ahead distance if there is no object).

Vissim 11:

Number of interaction objects

Number of interaction vehicles

limits the number of visible vehs ➤ within the min. look-ahead dist.

Idea: automated vehicle can see the signals ahead, but only one (or two...) vehicle(s) in front of itself because the sensors cannot see through the leading vehicle

Settings	Behavior
#obj < #veh	As Vissim 10
#obj >= #veh	New limited sight and interaction behavior

NUMBER OF INTERACTION VEHICLES – CONFIGURATION EXAMPLES

• 12

USE IMPLICIT STOCHASTICS

Idea: the stochastic imperfection of human driving is replaced by deterministic machines.

In the internal behavior model (for humans), there are several stochastic values indicating the spread of human behavior:

- the risk acceptance,
- the ability to estimate distance and speed difference,
- the precision when operating the throttle and braking pedals.
- \Box For AVs, deterministic values for these parameters can be assumed.

If the attribute "use implicit stochastics" is false, a deterministic average value is used instead of such a stochastically distributed value whenever the distribution cannot be set by the Vissim user.

This option affects:

 desired safety distance, 	the user may also specify a distribution or function
 desired acceleration, 	but these are not adjusted automatically,
 desired deceleration, 	only an implicit stochastic term is suppressed

decision points (when to start braking / accelerating).

INCREASED ACCELERATION

Idea: AVs, especially if using C2C communication, can use a tight coupling with small headways.

The normal "human" acceleration behavior cannot use reliable information about the future behavior of the leading vehicle.

 \square normal Vissim vehicles tend to fall behind when the leading vehicle is accelerating.

In order to allow vehicles to keep a small headway even during an acceleration process, there is the **new parameter** "Increased acceleration".

This value defines a percentage (usually > 100%) of the normal acceleration to be used when the leading vehicle is accelerating. The vehicle cannot exceed its maximum acceleration (which defines the technical limit) but it can exceed its desired acceleration in this situation.

Driving Behaviors / Vehicle Class Following Behaviors													
Select layout $\mathscr{F} + \mathscr{I} \times \mathbb{I}_{2} + \mathbb{I}_{4} + \mathbb{K} \Rightarrow = \mathscr{F} + \mathbb{K} \times \mathbb{I}_{2} + \mathbb{I}_{4} + \mathbb{K}$													
Count: 5	No	Name	NumInteractObj	StandDistIsFix	^	Count:	2 VehClass	W74ax	W74bxAdd	W74bxMult	W99cc0	W99cc1Distr	IncrsAccel
1	1	Urban (motorized)	4		E		1 10: Car	2.00	2.00	3.00	1.50	2: 0.9 s	100.0 %
2	2	Right-side rule (motorized)	2		S		2 20: HGV	2.00	2.00	3.00	1.50	2: 0.9 s	100.0 %
3	3	Freeway (free lane selection)	2		ľ								
4	4	Footpath (no interaction)	2		Ę –								
5	5	Cycle-Track (free overtaking)	2		84								
<				:	>								

NEW FEATURES & DRIVING LOGICS

	recommended setting for new features								
driving logic	enforce absolute breaking distance (EABK)	use implicit stochastics	number of interaction vehicles*	increased desired acceleration					
rail safe	ON	OFF	1	100%					
cautious	ON	OFF	1	100%					
normal	OFF	OFF	1	100-110%					
all knowing	OFF	OFF	>1	110%					

* for advanced sensors and/or communicating vehicles choose more than 1 if information from more than one vehicle ahead is available

• 15

HEADWAY BASED ON LEADING VEHICLE CLASS

Idea: the headway to followed vehicle depends on the followed vehicle type

CONSIDER VEHICLES IN DYNAMIC POTENTIAL

Idea: pedestrians find gaps between standing vehicles to cross the road

• 17

ZERO PASSENGERS

- Occupancy distribution (empirical) with value 0 possible now
- Simply to allow empty trips for future autonomous vehicles

Lehicle type		?	\times
No.: 100 Na	me: Car		
Static Functions & Dist	ributions Special External Drive	er Model	
Maximum acceleration:	1: Car		\sim
Desired acceleration:	1: Car		\sim
Maximum deceleration:	1: Car		\sim
Desired deceleration:	1: Car		\sim
			-
Weight:			\sim
Power:			\sim
Occupancy: 1: Single O	ccupancy		\sim
	-0		
	<u>Q</u> K	<u>C</u> ance	el

OPENDRIVE IMPORT (INFO)

http://www.opendrive.org

OpenDRIVE = open file format for the logical description of road networks. It has been developed and is being maintained by a team of simulation professionals with large support from the simulation industry. Its first public appearance was on January 31, 2006.

Import restricted to links & connectors

Usage

The following figure shows the typical incorporation of an OpenDRIVE® file into a simulation tool-chain:

PTV GROUP **COEXist**

PTV Vissim (64 bit) 11.00-00* (Beta version, expiration date 31.03.2018) File Edit View Lists Base Data Traffic Signal Control Simulation Evaluatio New 🕞 🏠 🕨 📕 🔳 Network D Open... etwork Editor - 多舞) lect layout... Open Layout... arthstar Geographics SIO nage courtesy of NASA > 2017 Microsoft Corporation Open Default Layout Read Additionally P Save Save as... Save as Default Network Save Selection as... Save Layout as... Save Lavout as Default Compare and Transfer Networks Scenario Management Import ANM (Vistro/Visum)... Export ANM Adaptive. Open Working Directory Synchro 7... Show Log File Synchro 7 Adaptive... 1 C:\..._do_not_see_through.inpx CAD for Pedestrian Areas... 2 C:\...esting_new_features.inpx BIM (*.ifc)... 3 \\s...mplicitstochastics2.inpx openDRIVE... 4 \\s...implicitstochastics.inpx

• 19

DRIVING BEHAVIOR PARAMETERS

DRIVING BEHAVIOR PARAMETERS: FOLLOWING

PTV Vissim uses the Wiedemann models.

Parameters control the driving behavior during the following process.

			driving logic							
	model	parameter**	rail safe	cautious	normal	all knowing				
		CC0	def	def	def	smaller				
		CC1	def/higher*	def/higher*	def	smaller				
	6	CC2	def/smaller	def/smaller	smaller	smaller				
	06 u	CC3	def/higher	def/higher	def	def				
vioi	Jan	CC4	Smaller	def/smaller	def/smaller	smaller				
eha	den	CC5	Smaller	def/smaller	def/smaller	smaller				
ց	Nie	CC6	def/smaller	def/smaller	def	smaller				
wir	_	CC7	def/smaller	def/smaller	def/smaller	smaller				
ollo		CC8	Smaller	smaller	def	def				
4		CC9	Smaller	smaller	def	def				
		ax def		def	def	smaller				
	N74	bxadd	def/higher*	def/higher*	def	smaller				
	_	bxmult	def/higher*	def/higher*	def	smaller				

* if EABK is on, brick wall stop distance is guaranteed ** see PTV Vissim manual for detailed description

	model	parameter**	rail safe	cautious	normal	all knowing	def
		CC0	1.5	1.5	1.5	1	1.5
		CC1	1.5	1.5	0.9	0.6	
		CC2	0	0	0	0	4
	56 u	CC3	-10	-10	-8	-6	
vior	าลท	CC4	-0.1	-0.1	-0.1	-0.1	
eha	den	CC5	0.1	0.1	0.1	0.1	
ц р	Nie	CC6	0	0	0	0	11.44
wir		CC7	0.1	0.1	0.1	0.1	
ollo		CC8	2	3	3.5	4	
4		CC9	1.2	1.2	1.5	2	1.5
		ах	2	2	2	1	2
	N74	bxadd	2	2	2	1.5	2
		bxmult	3	3	3	2	

Store Coexist
DRIVING BEHAVIOR PARAMETERS: LANE CHANGE

Parameters controlling the necessary lane change behavior (because of the route):

	rail safe		cauti	ous**	nor	mal	all kn	owing
parameter for necessary lane change*	own	trailing vehicle	own	trailing vehicle	own	trailing vehicle	own	trailing vehicle
maximum deceleration	n.a.	n.a.	smaller/def	smaller/def	def	smaller/def	def	higher/def
- 1 m/s per distance	n.a.	n.a.	smaller/def	smaller / def	def	def	def	smaller/def
accepted deceleration	n.a.	n.a.	smaller/def	smaller/def	def	def	def	higher/def

*necessary lane change means a lane change which is necessary in order to follow a defined route (it is not overtaking because of higher own desired speed)

** EABD (enforce absolute breaking distance) must be on

n.a. = not applicable

				contro	ol logic					
	rail safe		cauti	ous**	nor	rmal	all kn	owing	с	lef
parameter for necessary lane change*	own	trailing vehicle	own	trailing vehicle	own	trailing vehicle	own	trailing vehicle		
maximum deceleration	n.a.	n.a.	-3.5	-2.5	-4	-3	-4	-4	-4	
- 1 m/s per distance	n.a.	n.a.	80	80	100	100	100	100	100	100
accepted deceleration	n.a.	n.a.	-1	-1	-1	-1	-1	-1.5	-1	-1

• 22

DRIVING BEHAVIOR PARAMETERS: LANE CHANGE

Parameters controlling the necessary (because of the route) & free (overtaking) lane change behavior:

		contro	ol logic	
behavioral functionality	rail safe	cautious**	normal	all knowing
Advanced merging*	n.a.	on***/off	on***	on
Cooperative lane change*	n.a.	on***/off	on***	on
Safety distance reduction factor	n.a.	higher+EABD	def/smaller	def/smaller
min. headway (front/rear)	n.a.	higher	def	def
max. deceleration for cooperative braking	n.a.	smaller***	smaller***/def	def

*depends on technical equipment and implemented connectivity & cooperation functions

** EABD (enforce absolute breaking distance) must be on

*** If the AV cannot detect that the other vehicle wants to change lanes, the value should be off/zero

n.a. = not applicable

		contro	ol logic		
behavioral functionality	rail safe	cautious**	normal	all knowing	def
Advanced merging*	n.a.	on***/off	on***	on	
Cooperative lane change*	n.a.	on***/off	on***	on	off
Safety distance reduction factor	n.a.	1+EABD	0.6	0.5	
min. headway (front/rear)	n.a.	1	0.5	0.5	
max. deceleration for cooperative braking	n.a.	-2.5	-3	-6	

DRIVING BEHAVIOR PARAMETERS: SIGNAL CONTROL

Parameters control the reactions on signals.

		dri	ving logic	
attribute	rail safe*	cautious**	normal	all knowing
behavior at amber signal	continuous check	continuous check	one decision***	one decision
behavior at red/amber signal	stop	stop	stop/go	stop/go
reaction time distribution	-	-	-	-
reduced safety distance factor	higher+EABD	higher+EABD	def	def/lower
reduced safety start upstream of stop line	lower/def	lower/def	def	def/higher
reduced safety end upstream of stop line	lower/def	lower/def	Def	def/higher

*only protected phase possible in AV-certified environment

** probably protected phases only, EABD must be on

*** requires that the AV can remember that it has made a decision for that particular signal head already, else: continuous check

		dri	ving logic		
attribute	rail safe*	cautious**	normal	all knowing	def
behavior at amber signal	continuous check	continuous check	one decision***	one decision	cont. Check
behavior at red/amber signal	stop	stop	stop	stop	
reaction time distribution	-	-	-	-	
reduced safety distance factor	1	1	1	1	
reduced safety start upstream of stop line	100	100	100	100	100
reduced safety end upstream of stop line	100	100	100	100	100

• 24

IMPORT OF PREDEFINED PARAMETERS INTO YOUR NETWORK

PTV Vissim file "base network" available – contains recommended values for cautious, normal & all knowing driving logic – of course these can be adjusted if needed.

Read	Network object type	Conflict avoidance		Conflict handling	Offset	Discard duplicates	
	User-Defined Attributes	New key on conflict	Y	Ignore	10		
	Network Settings	None		Overwrite object			
	Simulation	None		Overwrite object			
	Dynamic Assignment	None		Overwrite object			
	Maximum Acceleration Functions	New key on conflict	Y	Ignore	10		
	Desired Acceleration Functions	New key on conflict	~	Ignore	10		
	Maximum Deceleration Functions	New key on conflict	~	Ignore	10		
	Desired Deceleration Functions	New key on conflict	~	Ignore	10		
	Desired Speed Distributions	New key on conflict	Y	Ignore	10000		
	Weight Distributions	New key on conflict	~	Ignore	10		
	Power Distributions	New key on conflict	~	Ignore	10		
	Time Distributions	New key on conflict	~	Ignore	100		
	Location Distributions	New key on conflict	×	Ignore	10		
	Color Distributions	New key on conflict	~	Ignore	1000		
	2D/3D Model Distributions	New key on conflict	×	Ignore	1000		
	Occupancy Distributions	New key on conflict	Y	Ignore	10		
	Vehicle Types	New key on conflict	~	Ignore	1000		
	Vehicle Classes	New key on conflict	~	Ignore	100		
	Vehicle Compositions	New key on conflict	~	lgnore	10		
	Driving Behaviors	New key on conflict	Y	Ignore	10		
	Link Behavior Types	New key on conflict	~	Ignore	10		
	Pedestrian Types	New key on conflict	~	Ignore	1000		
	Pedestrian Classes	New key on conflict	~	Ignore	100		
Mark	Pedestrian Types Pedestrian Classes all for reading Mark none for reading	New key on conflict New key on conflict Edit selecter	sd c	Ignore Ignore ells	1000		

COOPERATION & COMMUNICATION

Questions to answer:

- What is the impact of a communication/cooperation?
- Can I replicate expected behavior with standard PTV Vissim or do I need an interface?

Available interfaces:

- COM => allows to read & set attributes of Vissim objects or to manipulate them
 - Usable for V2V or V2I communication, e.g. for platooning or time slot based intersection control
 - Examples available in ...\Documents\PTV Vision\PTV Vissim 10\Examples Training\Autonomous Vehicles (AV)
- **DriverModel.dll** => replace internal car following behavior model of Vissim by own algorithm + optionally:
 - Own algorithm for lane changing
 - Own algorithm for reaction on signals
- **DrivingSimulator.dll** => couple own control algorithm (full behavior) with Vissim + optionally integration of:
 - Vehicle dynamics
 nanosimulation
 - Sensors

Third party software (PreScan, CarMaker...) can be coupled with Vissim => co-simulations.

MATERIALS FOR INTERFACES

- Interface descriptions & example files see the installation directory
 - C:\Program Files\PTV Vision\PTV Vissim 10\API\DriverModel_DLL
 - C:\Program Files\PTV Vision\PTV Vissim 10\API\DrivingSimulator_DLL
- COM Help & Examples see the examples directory
 - ...\Documents\PTV Vision\PTV Vissim 10\Examples Training\COM
 - Recommended: "...COM\Basic Commands" for instruction & tips in different programming languages
 - ...\Documents\PTV Vision\PTV Vissim 10\Examples Training\Autonomous Vehicles (AV)

CoEXist 🖁

• 27

PTV GROUP

the mind of movement

Heathrow 🖬

206

COEXist

www.ptvgroup.com

the mind of movement

CoExist Preparing the transition to Automated Vehicles

Alastair Evanson, PTV Vissim Solution Director

11/04/2019

- 1. Introduction to the Project
- 2. Study Locations
- 3. Core Tasks
- 4. Outcomes

What is CoEXist?

A European Union funded Horizon 2020 Project.

CoEXist develops an AV-ready framework for road authorities and fosters technological development of traffic simulations tools.

By simulating automated vehicles in four European cities, with different urban structures and traffic compositions, CoEXist analyses the effects of automated vehicles on urban road infrastructure, especially in a context of "co-existence" between automated and conventional vehicles.

The results of the project will enable road authorities to understand in detail the impact of increasing numbers of automated vehicles and to plan accordingly.

CoEXist Mission

The mission of CoEXist is to systematically increase the capacity of road authorities and other urban mobility stakeholders to get ready for the transition towards a shared road network with an increasing number of automated vehicles.

By simulating automated vehicles in four European cities, with different urban structures and traffic compositions, CoEXist analyses the effects of automated vehicles on urban road infrastructure, especially in a context of "co-existence" between automated and conventional vehicles.

CoEXist aims at enabling mobility stakeholders to get "AV-ready" (Automated Vehicles-ready).

To achieve its objective, CoEXist develops a specific framework and both microscopic and macroscopic traffic models that take the introduction of automated vehicles into account.

4 Strictly private and confidential

the mind of movemen

Co-existence of AV & Conventional vehicles

Unclear transition to full (?) autonomy.

- Results strongly depend on assumptions made.
- Models needed to evaluate assumptions.

AV penetration

Impact of AVs on highway / transition zones

Penetration Rates

Signalized urban traffic junctions

- Mixed Traffic
- V2I & V2V

Shared Space

 Co-existence of different modes in informal infrastructure environment.

Long term constructions

- Resilience of infrastructure to accommodate mixed fleet.
- Help to plan large capital schemes with future mixed fleets.

Macroscopic

Parking:

- Drop off/ pick up and self parking operations.
- Vehicle return and infrastructure layouts.

Freight:

- Urban logistics.
- Autonomous delivery pods.

Strictly private and confidential

Milton Keynes (TRL & University of Cambridge)

Network categorisation:

- Capacity of network with mixed fleets.
- Designation of roads/ routes to certain vehicle types.

Ridesharing systems:

- Car sharing & public ridesharing.
- Multi-chain, multi-modal trips.

Macroscopic

10 Strictly private and confidential

the mind of movement

Validated extension of existing microscopic transport models to include different types of automated vehicles.

Assessing the impact of automated vehicles on:

- Safety
- Traffic efficiency
- Space demand and development of design guidance for hybrid infrastructure

Define requirement for CAV-ready traffic flow simulation

- To establish a real-time and realistic connection between the AV-control logics, the AV-simulator and the microscopic modelling tool.
- To develop a set of model-based default values for AVs, including passenger car and light-freight vehicles.
- To collect data of two AVs on the public test site for validation of microscopic modelling tool.
- To extend micro- and macroscopic modelling tools to enable analysis of AV/CV-coexistence on the same network.

Interface approach:

- Improve APIs
- For users who have their own control algorithms (OEMs & Researchers)

Internal approach:

Micro

PT

VISSIM

- Improve AV behavior
- For traditional Transportation Engineers (Planners, Consultants, Traffic Engineers)

Macro

Capacity

•

 Volume – Delay Function

Variations between the scenarios result in variations in the car following behaviour:

- Prius 1 and Prius 2 switch positions.
- Prius 1 and 2 communicate or don't communicate.
- Predefined timegaps differ.

Test track data output

Vehicle trajectory and behaviour data recorded from the public test track and analysed to determine following behaviour.

Comparison of vehicle following behaviour for 'connected' and 'non-connected' scenarios. Distance to vehicle in front recorded for a variety of vehicle travelling speeds.

Key results of public road test:

- Safety distance in 'non-connected' scenario significantly higher than in 'connected' scenario.
- Reduced velocity in safety distance in 'connected' scenario compared to 'non-connected' scenario.

Validation of microscopic traffic modelling tools

Vehicle trajectory and behaviour data compared and validated against microscopic simulation (PTV Vissim) driving behaviours.

Existing microscopic simulator driving behaviours have much more oscillation than automated vehicles from road test.

Automated vehicle behaviour in microscopic simulation:

- Clear linear, deterministic relationship between following distance and speed.
- New automated vehicle behaviour parameters added to microscopic simulation (PTV Vissim) to achieve validation against real world public test automated vehicle data.

the mind of movement

Automated vehicles simulation

Addition of new driving behaviours to PTV Vissim to replicated connected & automated vehicles.

AV Adutionalising

- Respiressatile and discharge sers
- Ibelitations se fee barvability Replicates ability with ensure Brinkers litter bedistance
- always ereal rate or the or vehicles

the mind of movement

Automated vehicles simulation

Addition of new driving behaviours to PTV Vissim to replicated connected & automated vehicles.

- Following behaviour can be altered depending on whether leading vehicle is human, AV or CAV.
- All automated vehicles adopt the same driving characteristics as the rest of the fleet, i.e. no variation between vehicles.

														1	
AV	AV	AV CAV	AV	CAV CAN	CAV	CAV	AV	AV	CAV	AV	AV C	AV.	AV	CAV CAV	
														2	
AV C/	AV CAV CAV	AV	AV	AV	CAV CA	V CA	V	AV	AV	AV	AV CAV	CAV C	AV C	AV CAV	CAV
age Netwo	ork Editor														
ige Netwo	ork Editor Vehicle Class Following Behavio	XS													PTV
age Netwo Behaviors / ayout	sik Editor Vehicle Class Editowing Behavio • 🖋 🚽 X 😒 🛊 🕯 1	ors	wi - Ra SI	88 *						≠ + × \$4	1 E				PTV
ige Netwo Behaviors / iyout	ork Editor Vehicle Class Following Behavio - ♪ ♪ ★ ♪ X > 2 ± 1 1 Name	ors Vehicle class folio Carfoll	wi 🔹 🕕 🌒	W74ax	W74bxAdd W	74bxMult	UseImplicStoch	EnforcAbsBrakDi	st W99cc0	Count 2 VehClas	1 1 55 W	99cc0 W3	99cc1Distr	IncrsAccel	PTV
ige Netwo Behaviors / iyout No	vehicle Class Following Behavio • Jehicle Class Following Behavio Name 1 Urban (motorized)	275 Carfoll Wieden	wi 🔹 😡 🌒 IowModType nann 74	₩74ax 2.00	W74bxAdd W 2.00	74bxMult 3.00	UseImplicStoch	EnforcAbsBrakDis	st W99cc0	Count 2 VehCla	t T	99cc0 W	99cc1Distr	IncrsAccel	PTV
ige Netwo Behaviors / iyout No	vchicle Class Following Behavio Mane Utban (motorized) 2 Right-side rule (motorized)	ors ▼ ≩ Vehicle class follo Carfoll Wieden d) Wieden	wi • ि 🌒 🌒 IowModType nann 74 nann 99	₩74ax 2.00 2.80	W74bxAdd W. 2.00 2.00	74bxMult 3.00 3.00	UselmplicStoch	EnforcAbsBrakDi	st W99cc0 7.5 1.5	Count: 2 VehCla	r E ss W -Yellow Purple	99cc0 W3 1.50 103 1.50 102	99cc1Distr 1:0.6 s	IncrsAccel 100.0 %	PTV VI9
ige Netwi Behaviors / iyout	ork Editor Vehicle Class Following Behavio Name 1 Utban (motorized) 2 Right-side rule (motorized 3 Freeway (free lane selectic	ors Carfol Wieden d) Wieden on) Wieden	wi • <table-cell> 🕽 🖉 lowModType nann 99 nann 99</table-cell>	₩74ax 2.00 2.00 2.00 2.00	W74bxAdd W 2.00 2.00 2.00 2.00	74bxMult 3.00 3.00 3.00	UseImplicStoch	EnforcAbsBrakDis	st W99cc0 1.5 1.5 1.5	Count 2 VehClas 1 T0: CAV 2 80 AV -	t Karala Salaha Sa	99cc0 W3 1.50 103 1.50 102	99cc1Distr 1: 0.6 s 1: 1.5 s v	IncrsAccel 100.0 % 100.0 %	PTV
ige Netwi Behaviors / yout No	vehicle Class Following Behavio - Vehicle Class Following Behavio - Vehicle Class Following Behavio - Vehicle Class Following - Vehicle Class Following - Vehicle Class Following Behavior - Vehicle Class F	275 Carfoll Wieden c) Wieden No inte No inte	wi • 🚱 🍔 lowModType nann 74 nann 99 raction	₩74ax 2.00 2.00 2.00 2.00 2.00 2.00 2.00	W74bxAdd W 2.00 2.00 2.00 2.00 2.00	74bxMult 3.00 3.00 3.00 3.00 3.00	UseImplicStoch	EnforcAbsBrakDis	st W99cc0 15 15 15 15 15	Count 2 VehClas 1 70- CAV 2 80- AV -	t Karala V ss V Purple	99cc0 W9 1.50 103 1.50 102	99cc1Distr I: 0.6 s I: 1.5 s ⊆	IncrsAccel 100.0 % 100.0 %	PTV
ige Netwo Behaviors / yout No	Ante Editor Vehicle Class Following Behavio Name 1 Urban (motorized) 2 Right-side rule (motorized 3 Freeway (free lane selectic 4 Footpath (no interaction) 5 Cycle-Track (free overtains)	ors Carfoll Wieden d) Wieden on) Wieden No inte ng) Wieden	wi • 🚱 🍔 iowModType nann 74 nann 99 nann 99 rattion nann 99	₩74ax 200 200 200 200 200 200 200 200 200	W74bxAdd W/ 2.00 2.00 2.00 2.00 2.00 2.00	74bxMult 3.00 3.00 3.00 3.00 3.00 3.00 3.00	UselmplicStoch V V V	EnforcAbsBrakDis	st W99cc0 55 15 15 15 15 05	Count 2 VehCla 1 70° CAV 2 80° AV -	t Totologian Statement of State	99cc0 W3 1.50 103 1.50 102	99cc1Distr I: 0,6 s ≿ 1,5 s ⊆ ∽	IncrsAccel 100.0 % 100.0 %	PTV
ige Networs / Schaviors / yout No	Vehicle Class Following Behavio Vehicle Class Following Behavio I Urban (motorized) I Urban (motorized) 2 Right-side rule (motorized) 3 Freeway (free lane select) 4 Footpath (no interaction) 5 Cycle-Track (free overtaking) 10 AV Cattious.	275 Vehicle class follo Wieden 0) Wieden 0) Wieden 10) Wieden 10) Wieden 10) Wieden 10) Wieden 10) Wieden	wi • 😰 🌒 lowModType nann 99 nann 99 raction nann 99 nann 99	W74ax 200 200 200 200 200 200 200 200 200 20	W74bxAdd W 2.00 2.00 2.00 2.00 2.00 2.00 2.00	74bxMult 3.00 3.00 3.00 3.00 3.00 3.00	UseImplicStoch	EnforcAbsBrakDi	st W99cc0 55 15 15 15 05 15 15	Count 2 VehCla Count 2 VehCla 2 80: AV -	t Karala Vi ss Vi - Vellow Purple	99cc0 W5 1.50 103 1.50 102	99cc1Distr I: 0.6 s I: 1.5 s v	IncrsAccel 100.0 % 100.0 %	PTVV
age Netwins / Behaviors / ayout t: No 1 2 3 4 5 6 6 7	Solk Editor Vehicle Class Following Behavio Image: Solid So	xrs ✔ Whicle class follo ₩ eden d) Wieden No inte No inte No inte Wieden Wieden Wieden	wi • 😰 🌒 lowModType nann 74 nann 99 nann 99 nann 99 nann 99 nann 99 nann 99		W74bxAdd W 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	74bxMult 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.0	UseimplicStoch	EnforcAbsBrakDi	at W99cc0 55 55 55 55 55 55 55 55 55 55 55 55 55	Count: 2 VehCla Count: 2 VehCla 2 80: AV -	t E ss W -vellow Purple	99cc0 W3 1.50 103 1.50 102	99cc1Distr I: 0,6 s I: 1,5 s ⊆	IncrsAccel 100.0 % 100.0 %	PTV
age Netwi Behaviors / ayout t: No 1 2 2 3 4 5 6 7 8	Vehicle Class Following Behavio Vehicle Class Following Behavio Name 1 Utban (motorized) 2 Right-side rule (motorized) 3 Freeway (free lane select) 5 Cycle- Track (free overtakin 102 AV Mormal 102 AV Mormal 103 AV All-knowing	vs Vehicle class folio Veiden Wieden No inte No inte Wieden Wieden Wieden Wieden Wieden	wi • • • • • • • • • • • • • • • • • • •	₩74ax 2000 2000 2000 2000 2000 2000 2000 20	W74bxAdd W 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	74bxMult 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.0	UseImplicStoch	EnforcAbsBrakDi	st W99cc0 55 15 15 15 05 15 15 15 15	Count: 2 VehCla 1 70: CAV 2 80: AV -	t K ss W -Yellow Purple	99cc0 W9 1.50 102 1.50 102	99cc1Distr I: 0,6 s I: 1,5 s ⊆ ⊆	IncrsAccel 100.0 % 100.0 %	PTV

20 Strictly private and confidential

the mind of movement

PTV Vissim 11: AV Behaviors

Enforce Absolute Braking Distance

Safe distance anytime

Interaction...

- vehicles
- objects

PTV Vissim 11: AV Behaviors

Headway Based on Class of Leading Vehicle

103 Name: AV all-k	(nowing (CoEXist)				
owing Car following model Lane	Change Lateral 5	signal Control Mes	0		
iedemann 99					4
odel parameters					
0 (Standstill Distance):	1.00 m	CC5 (Positive 'Fo	ollowing' Threshold):	0.10	
11 (Headway Time):	103: 0,6 s 🗸	CC6 (Speed dep	endency of Oscillation):	00.00	
2 ('Following' Variation):	0.00 m	CC7 (Oscillation	Acceleration):	0.10 m/s2	
3 (Threshold for Entering 'Following'): -6.00	CC8 (Standstill A	Acceleration):	4.00 m/s2	
4 (Negative 'Following' Threshold):	-0.10	CC9 (Acceleratio	on with 80 km/h):	2.00 m/s2	
llowing behavior depending on the v	rehicle class of the h	ading vehicle:			
unt: 4 VehClass M	/74ax	W74bxAdd	W74bxMult V	99cc0 W9	99cc1Distr
1 10: Car	2.00	2.00	00;\$/////////	2.00 101	:25
2 17: Car AV cautious	00;2,00	111111200	3.00	1.50 102	1,5 s
3 18: Car AV normal	2.00	2.00	00;€///////////////////////////////////	1.00 2:0	s 6.
4 19: Car AV all-knowing 🗸 🚺	2,00	2,00	(11/1/1/1/3/00)	0.50 103	:: 0,6 s

GROUP	of movement
ΡTV	tha mind

New Options

Use Implicit Stochastics

- No stochastic variation of internal parameters
- Used wherever distribution cannot be user-defined

Increased Acceleration

- Allow for constant distance even when accelerating
- Percentage (typ. > 100%)

Occupancy

Empirical distribution can be 0

11 Occupancy Distr	ibution				?	>
No.: 2	Name:	AV: 0-1]	
0.0				1.0]	
					F	
					-	
					- - -	
					-	
					- -	
					- - -	
0.00					- 0.00	
			ОК		Cancel	

Next Steps

Application of microscopic simulation tools.

Taking the automated vehicle driving behaviour models and applying them in the use cases of the four partner cities of CoEXist.

- Simulate impact of coexistence of automated vehicles in mixed fleets.
- Assess required infrastructure to inform transition & facilitation of automation.

New developments in PTV Vissim

Peter Sukennik, PTV Group

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 723201

Recap:

Features for driving behaviour

(since Vissim 11)

Enforce absolute braking distance

Use implicit stochastics

Number of interaction vehicles

Increased acceleration

Gap time based on leading vehicle class

Consider vehicles in dynamic potential

Zero passengers

Open drive import

See previous webinar https://www.youtube.com/watch?v=C_bougPNSw4

www.h2020-coexist.eu

This project has received funding from the Union's Horizon 2020 research and innova programme under grant agreement No. 72

Recap:

Driving behaviors

(since Vissim 11)

Modified parameters based on:

- CoEXist driving behavior concept
- Empirical data
- Co-simulation data
- Assumptions

Driving Be	havio	rs			
Select layo	ut	- 🎤 🕂 📈 🔀 🛓	🔺 🛣 🛣 <sir< th=""><th>ngle List></th><th>- 6</th></sir<>	ngle List>	- 6
Count: 8	No	Name	NumInteractObj	StandDistIsFix	StandDis
1	1	Urban (motorized)	4		///0,
2	2	Right-side rule (motorized)	2		0
3	3	Freeway (free lane selection)	2		///0,
4	4	Footpath (no interaction)	2		0
5	5	Cycle-Track (free overtaking)	2		///0,
6	101	AV cautious (CoEXist)	2		0.
7	102	AV normal (CoEXist)	2		0,
8	103	AV aggressive (CoEXist)	10		0.

www.h2020-coexist.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 723201

Lane specific driving behavior

(since Vissim 2020)

• Now, a link behavior type can be assigned to a lane.

• It overwrites the link behavior type.

r	🗓 Link									?	×	
	No.: 33	Name:										
	Num. of lanes: 3	Link behavior type:	25: Highwa	v							~	
	Link length: 1965.156 m	1: Road								~		
	-	1: Base								~		
	Lanes Meso Pedestrian Area Display Dyn. Assignment Others											
	Count: 3 Index Width	LinkBehavTyp	e N	T B	locked	Display	NoLnCh	NoLnCh	NoLnCh	NoLnC		
	1 1	3.50 25: Highway						//xtx//		////	\mathbb{Z}	
	2 2	3.50 25: Highway										
	3 3	3.50 <mark>26: Highway-</mark>	platooning	\sim			[]/\$\$/].					
	Has overtaking lane											
								<u>0</u>	К	<u>C</u> ance	el	
		www.h2020-coe	kist.eu			This projec Union's Ho programme	ot has receiv prizon 2020 e under grar	ed funding fr research and nt agreement	om the Europ l innovation No. 723201	ean 4		

- Use case: Simulate effects on general traffic
- No simulation of platoon internals \rightarrow stable driving
- New driving behavior attributes

Platoon Life Essentials

Split platoon at red signals

6

Platoon stability

No simulation of communication process itself: no packet sending or dealing with latency

New vehicle attributes

- "Safety distance (net)" is the desired safety distance (front to rear)
- "Clearance"
 - the distance to the leading vehicle (front to rear)
- "Following distance (net)"
 - the distance to the relevant interaction object (front to rear)

Vehicles In Network: Select Attributes						×
Q	↑ ↓ ⊕					~
Image: Constraint of the second s	Attributes Number Safety distance (net) Clearance Following distance (net)	Decimals	ShowUnits	Alignment Right Right Right Right	Format Default Default Default	
Attribute: SafDistNet Net safety distance during the time step Source: Simulation						
				<u>0</u> K	<u>C</u> anc	el
www.h2020-coexist.eu	*** This projec Union's Ho programme	ot has receiv orizon 2020 e under grai	ed funding fr research and nt agreement	om the Europ l innovation . No. 723201	ean 9	

GROUP PTV

the mind of movement

Peter Sukennik peter.sukennik@ptvgroup.com

#H2020CoEXist @H2020_CoEXist

The sole responsibility for the content of this document lies with necessarily reflect the opinion of the European Union. Neither the EASM Commission are responsible for any use that may be pretherein.

It does not E nor the Euro

ation conta

PTV GROUP

the mind of movement

CoEXist project & PTV Vissim

Peter Sukennik

The future is automated

The CoEXist project

Aim: Prepare cities for the transition phase during which connected and automated vehicles and conventional vehicles will coexist on the roads.

Automation-Ready Transport Modelling

- Integration of CAVs in existing transport modelling tools:
 - Microscopic
 - Macroscopic

2

CoEXist approach - Modelling

Data

Collected on test-track in Helmond

- Linear deterministic relationship headwayspeed with C2C communication.
- Almost linear relationship headway-speed when following manually driven car or AV without C2C communication.
- Oscillations during the following process are small and without much variance
- With C2C communication the test vehicles were able to drive safely with 0.6- or 0.3second headway
- Large safety distance in driveaway behaviour when there is no communication.
- No stochastic variation in driveaway
 behaviour.

New PTV Vissim features

Switching off implicit stochastic

Internal behavior model integrates several stochastic values indicating the spread of human behavior:

the risk acceptance,

5

- the ability to estimate distance and speed differences,
- the precision when operating the throttle and braking pedals.

For AVs, deterministic values for these parameters can be assumed.

New features

6

Sensors/Equipment limitations

Idea: an automated vehicle can see the signals ahead, but only one (or two...) vehicle(s) in front of itself because the sensors cannot see through the leading vehicle

New features

Headway Based on Class of Leading Vehicle

0

						×
o.: 103 Name: AV all-k	-knowing (CoEXist)					
ollowing Car following model Lane	Change Lateral	ignal Control Meso				
Wiedemann 99					23	>
Model parameters						
CC0 (Standstill Distance):	1.00 m	CC5 (Positive 'Follo	ving' Threshold):	0.10		
CC1 (Headway Time):	103: 0,6 s 🗸	CC6 (Speed depend	ency of Oscillation):	00'0		
CC2 ('Following' Variation):	0.00 m	CC7 (Oscillation Act	eleration):	0.10 m/s2		
CC3 (Threshold for Entering 'Following'	3'): -6.00	CC8 (Standstill Acce	leration):	4.00 m/s2		
CC4 (Negative 'Following' Threshold):	-0.10	CC9 (Acceleration w	ith 80 km/h):	2.00 m/s2		1
Following behavior depending on the v	vehicle class of the I	ading vehicle:				
Count: 4 VehClass M	W74ax	W74bxAdd W	74bxMult W9	9cc0	W99cc1Distr	
1 10: Car	2.00	2:00	00'5//////	2.0(0 101:2 s	
2 17: Car AV cautious	2,00	2,00	00/	1.5(0 102: 1,5 s	
3 18: Car AV normal	00/2	2:00	00;€////////	1.0(0 2: 0.9 s	
4 19: Car AV all-knowing 🗸	00,2	[[[]] [] [] [] [] [] [] [] [] [] [] [] [00/2//////	0.5(0 103: 0,6 s	

PTV GROUP

Platooning

Platoon = connected vehicles traveling very dosely & safely together, possibly at high speeds

- Use case: Simulate effects on general traffic
- No simulation of platoon internals → stable driving
- New driving behavior attributes

Platoon Life Essentials

Platoon stability

Last vehicle in platoon Proceeds to keep defined gap time/clearance to preceding vehicle accel limited to accel_{leader}±2 m/s²

No simulation of communication process itself: no packet sending or dealing with latency

*

Platoon attributes

Index in Platoon (IdxInPlatoon)
 Position within the platoon

Since PTV Vissim 2020.00-07:

Platoon Leader Number (PlatoonLeaderNo)

If a vehicle is a member of a platoon, this attribute is set to the vehicle number of the platoon leader. Otherwise, it is empty.

Platoon Size (PlatoonSize)

If a vehicle is a member of a platoon, this attribute contains the total number of vehicles in the platoon. Otherwise, it is empty.

Modeling framework

CoEXist Driving Logics

Modeling framework

Main uncertainty parameters considered for the experimental design

	Driving Logic		AV Class	St	age of CoEXistence	Ro	oad Environment		Type of vehicles
•	Rail-safe	•	Basic	•	Introductory	•	Motorway	•	Cars
•	Cautious	•	Intermediate	•	Established	•	Arterial	•	Trucks
•	Normal	•	Advanced	•	Prevalent	•	Urban street	•	Buses &
•	All-knowing					•	Shared space		minibuses

Example relationships between AV-class, driving logics and operational design domain

Road type	Basic	Intermediate	Advanced
Motorway	Cautious	Normal	All-knowing
Arterial	Cautious	Cautious / Normal	All-knowing
Urban street	Human	Cautious	Normal
Shared space Human		Rail-safe / Human	Cautious

PTV GROUP the mind of movement

Impact Assessment

	CoEXist Hybrid Road Infrastructure Impact Assessment Metrics						
	Traffic Performance	Space efficiency	Safety				
• • • • •	Served Demand Ratio (SDR) Average travel time (ATT) Average individual travel time per distance (AITTD) Average delay (AD) Vehicle kilometres travelled (VKT) Person kilometres travelled (PKT) Vehicle Hours Travelled (VHT) Person hours travelled (PHT)	 Average Space claim (ASC) Average space time footprint (STF) Space time utilisation (STU) 	<u>Qualitative safety assessment approach:</u> Identification of conflict situations incorporating boundary conditions (such as road environment, road characteristics, type of accident, etc.) which are potentially addressed by each driving function, to qualitatively assess the impacts of automated functionalities on road safety. <u>Quantitative safety assessment:</u> through combined simulation and road safety inspections.				
15	Length of vehicle Hea	Space claim	Speed Speed Space claim Required gap Space claim Required gap				

CoEXist Use Cases

Gothenburg, Sweden

- Shared space
- Accessibility during long-term construction works

Milton Keynes, United-Kingdom

- Waiting and drop-off areas for passengers
- Priority junction operation (roundabouts)

Helmond, the Netherlands

- Signalised intersection including peds and cyclists
- Transition from interurban highway to arterial

Stuttgart, Germany

- Impacts of CAVs on travel time and mode choice
- Impact of driverless car- and ridesharing services

Brief description

Kungstorget Gothenburg

- Peak volume of 2946 pedestrians
- Peak volume of 50 vehicles

Modelling approach

- Gibb (2015) adapted, needs scripting
- Many narrow links define the shared space area
- Lots of priority rules control behavior of vehicles towards pedestrians
- Different parameters for conflicts depending on the driving logic
- Double representation: pedestrians react to vehicles as if they were large pedestrians

Vti iman.pereira@vti.se

the mind of movemen

APIs improvements

Driving simulator interface:

 Automatic interpolation of Vissim vehs/peds world coordinates, orientations and speeds between Vissim

Driving Simulator Interface allows connecting Vissim to a driving, cycling or walking simulator (DS).

That DS can either be simulator hardware used by a human or a piece of software representing the algorithms of a CAV or multiple CAVs.

from the center of the front end of a simulator vehicle or pedestrian.

External driver model:

DIVENVIOUELDLE as WEIL

External driver model DLLs may be used now in multithreaded simulation runs if all DLLs confirm that they support multithreading

External DriverModel interface

provides the option to replace the internal driving behaviour by a fully user-defined behaviour for some or all vehicles in a simulation run.

The polyline of the current lane of the ego vehicle (along its route/path, within the visibility distance) is passed to the DLL as well.

PTV GROUP the mind of movement

CoEXist Lessons learnt and recommendations

- New features implemented in traffic modelling tool to allow simulation of automated vehicles. But still big responsibility on modeler to define the assumptions (about how vehicles should or will behave).
- Driving logics: much research is ongoing but there are still no fixed rules or standards and high uncertainties.
- CoEXist delivered the tools for a structured approach of assessing future scenarios and handling uncertainties (e.g. automation-ready framework, comprehensive modelling approach and impact assessment methodology).
- Tools developed enable assessment of innovative infrastructure measures, but measures tested show mobility improvements mainly for high automation and penetration levels.
- Use case simulations show potential deterioration of urban mobility, before promised benefits of CCAM are seen: cities should to plan for the transition phase.
- Inserting CAVs in traffic does not necessarily improve efficiency. Depends on penetration rate and driving logic. Higher penetration rates and less cautious (more advanced) CAVs will start to generate some gains.

the mind of movemen

Final Event

Milton Keynes UK

Registration:

https://www.h2020coexist.eu/events/finalconference/

Online only!

Conference stream: March 25

Workshop: March 26

PTV GROUP

