This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 723201-2
CoEXist Virtual Final Conference - Part 1: Automation-ready tools and impact assessment findings

Wednesday 25 March 2020

13:45 Registration and technical support
14:00 Welcome, Siegfried Rupprecht, Rupprecht Consult & INEA (tbc)
Introduction to CoEXist, Daniel Franco, Rupprecht Consult

<table>
<thead>
<tr>
<th>CoEXist tools</th>
<th>Overview of the CoEXist impact assessment approach and automation-ready transport (infrastructure) assessment tool, Johan Olstam, VTi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Automation-ready modelling tools: microscopic traffic flow simulation, Charlotte Fléchon, PTV Group</td>
</tr>
<tr>
<td></td>
<td>Automation-ready modelling tools: macroscopic travel demand simulation, Markus Friedrich, University of Stuttgart</td>
</tr>
<tr>
<td></td>
<td>Toward the Development of Analysis, Modelling, and Simulation (AMS) Tools for Connected and Automated Vehicles (CAVs), Rachel James, USDOT Federal Highway Administration (FHWA)</td>
</tr>
<tr>
<td>14:45 Polls - Q&A</td>
<td></td>
</tr>
<tr>
<td>15:05 Polls - Q&A</td>
<td></td>
</tr>
<tr>
<td>15:25 Polls - Q&A</td>
<td></td>
</tr>
<tr>
<td>15:30 Break</td>
<td></td>
</tr>
</tbody>
</table>

Potential impact of vehicle automation in four cities, across eight scenarios:

15:45 Helmond (NL): (i) multimodal signalised intersection and (ii) highway-urban road transition, Frank van den Bosch, city of Helmond
16:00 Gothenburg (SE): (i) shared space; (ii) accessibility during long-term roadworks, Iman Pereira & Chengxi Liu, VTi
16:20 Milton Keynes (UK): (i) drop off and waiting for passengers; (ii) priority at roundabouts, John Miles, University of Cambridge
16:40 Stuttgart (DE): (i) network level travel time & mode choice; (ii) ridesharing, Jörg Sonnleitner, University of Stuttgart
17:00 Polls – Q&A
17:05 Lessons learnt & conclusions, Wolfgang Backhaus, Rupprecht Consult
CoEXist Virtual Final Conference - Part 2: What next for Cities and CAVs?

Workshop: What next for cities and CAVs?

14:00 Welcome, Siegfried Rupprecht
14:05 Automation-ready framework for city authorities,
Wolfgang Backhaus, Rupprecht Consult

14:20 CoEXist – Roadmap towards automation-ready cities
Brian Matthews, Milton Keynes city council
Susanne Scherz, city of Stuttgart
Mikael Ivari, city of Gothenburg
Frank van den Bosch, city of Helmond

15:20 Poll & self-assessment of automation-readiness
15:30 Interactive group discussion
Key issues for cities, including change and expectations management, future proofing sustainable mobility policy, future proofing infrastructure investment and citizens engagement citizens.

15:50 Lessons learnt and conclusions, Wolfgang Backhaus, Rupprecht Consult
16:00 End of the session
The webinar team

Moderator: Siegfried Rupprecht

Project Coordinator: Wolfgang Backhaus

Poll manager: Marie Rupprecht

Question manager: Daniel Franco

Technology manager: Wolfram Buchta
Poll question

Did you attend Part 1 of the CoEXist final conference yesterday?

- Yes
- No
- No, but I would like to watch the recording/review slides

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 723201-2
Question

What is the key feature of automation-readiness in your view?

Fill in your answer into your question box
CoEXist Virtual Final Conference - Part 2: What next for Cities and CAVs?

Workshop: What next for cities and CAVs?

14:00 Welcome, Siegfried Rupprecht

14:05 Automation-ready framework for city authorities,
Wolfgang Backhaus, Rupprecht Consult

14:20 CoEXist – Roadmap towards automation-ready cities
Brian Matthews, Milton Keynes city council
Susanne Scherz, city of Stuttgart
Mikael Ivani, city of Gothenburg
Frank van den Bosch, city of Helmond

15 min per speaker (including 3min Q&A)

15:20 Poll & self-assessment of automation-readiness

15:30 Interactive group discussion
Key issues for cities, including change and expectations management, future proofing sustainable mobility policy, future proofing infrastructure investment and citizens engagement citizens.

15:50 Lessons learnt and conclusions, Wolfgang Backhaus, Rupprecht Consult

16:00 End of the session

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 723201-2
Capacity building for road authorities for the transition phase of co-existence of conventional and connected and automated vehicles

Wolfgang Backhaus, Rupprecht Consult

#H2020CoEXist
@H2020_CoEXist

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 723201-2
What is CoEXist?

- **Programme:** EU H2020-ART05
- **Duration:** May 2017 – April 2020
- **Strategic Aim:**
 To bridge the gap between automated vehicles (AVs) technology and transportation and infrastructure planning, by strengthening the capacities of urban road authorities and cities to plan for the effective deployment of AVs

Enable mobility planning towards “automation-readiness”, defined as:
The capability of making structured and informed decisions about the deployment of Connected and Automated Vehicles
CoEXist approach

- Automation-Ready Transport Modelling
- Automation-Ready Road Infrastructure
- Automation-Ready Road Authorities

Demonstration of CoEXist tools

- Gothenburg
- Helmond
- Milton Keynes
- Stuttgart

Microscopic

Macroscopic

www.h2020-coexist.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 723201-2
Need for guidance

CoEXist (2019): Automation-ready Online Survey (EU mobility stakeholders)

https://www.h2020-coexist.eu/survey

How well prepared would you say your city or organisation is for the introduction of CAVs? (54 answers)
Automation-Ready framework

“Automation-readiness”
The capability of making structured and informed decisions about the deployment of CAVs

Reduce uncertainties through:
- Guidance on technology, analysis methods, impacts and measures
- Clear-headed and informed decisions about automation
- Automation FAQ for cities
- https://www.h2020-coexist.eu/resources/

Overview of the phases towards automation-readiness, with examples of measures and relevant questions to guide the analysis
Automation-Readiness Framework

“Automation-readiness”
The capability of making structured and informed decisions about the deployment of CAVs

Reduce uncertainties through:

• Guidance on technology, analysis methods, impacts and measures
• Clear-headed and informed decisions about automation
• Automation FAQ for cities

https://www.h2020-coexist.eu/resources/
Phase 1: Automation awareness creation – Automation readiness self-assessment as basis

- Self-assessment
- Capacity development needs?
- How to communicate effectively with citizen's, stakeholders, between public sectors/institutions?
- Resources and tools required?
- Knowledge/data gaps?
SUMP 2.0 Practitioner’s Briefing

How to plan with uncertainties?

Assure quality

Arrange for monitoring and evaluation

Involve citizens and relevant stakeholders

Cooperate across institutional boundaries

Plan for sustainable mobility in the ‘functional city’

Develop a long-term vision and a clear implementation plan

Assess current and future performance

Develop all transport modes in an integrated manner

https://www.h2020-coexist.eu/resources/
References

 https://mobility.mit.edu/sites/default/files/Are%20cities%20prepared%20for%20autonomous%20vehicles_0.pdf
Poll question

What are main obstacles for effective stakeholder cooperation and public participation when planning for Cooperative Connected and Automated Mobility (CCAM)?

- Low level of awareness about the CCAM
- Lack of political will
- Lack of interest in participation from citizens/stakeholders
- Communicating technical complexity of the topic (to citizens/authorities)
- Other (specify in the question box)
Workshop: What next for cities and CAVs?

14:00 Welcome, Siegfried Rupprecht

14:05 Automation-ready framework for city authorities, Wolfgang Backhaus, Rupprecht Consult

14:20 CoEXist – Roadmap towards automation-ready cities
- Brian Matthews, Milton Keynes city council
- Susanne Scherz, city of Stuttgart
- Mikael Ivari, city of Gothenburg
- Frank van den Bosch, city of Helmond

15 min per speaker (including 3min Q&A)

15:20 Poll & self-assessment of automation-readiness

15:30 Interactive group discussion
- Key issues for cities, including change and expectations management, future proofing sustainable mobility policy, future proofing infrastructure investment and citizens engagement citizens.

15:50 Lessons learnt and conclusions, Wolfgang Backhaus, Rupprecht Consult

16:00 End of the session
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 723201-2
Milton Keynes

Content

• Policy Framework in UK and MK
• City Priorities and Challenges
• Approach - Urban Laboratory / Testbed
• Use Cases
• Working with Citizens
• Lessons Learned
• Next Steps
Policy Framework in UK and MK
Priorities & Challenges

Priorities - Driving policy

- Safety
- Capacity
-Mobility for all
- Productivity
Approach – Urban Laboratory

Autonomous & Connected
Underpinning Research

Research programme established to supplement trials

Based on ‘answering’ important city focussed questions

Covering (prioritised)

1. Public Attitudes
2. Business Cases
3. Technology Development
4. Infrastructure Requirements
City Use Cases: Co-Exist

Real propositions - which develops scalable approach to testing

Can a modelling approach be developed?

• **City Centre: Drop off and Pick – Up**

 How can you use CAV capability to unlock city centre road space: Can it deliver efficiencies without causing gridlock

• **Uncontrolled Junctions**

 How can sub urban roads support CAVs – What infrastructure changes – if any is required.

Support Project (Park AV) looking at business case
Working with Citizens

1. Which words best describe your current view of self-driving vehicles? Circle all that apply

- Hesitant
- Happy
- Worried
- Curious
- Nervous
- Calm
- Uneasy
- Trusting
- Excited
- Vulnerable
- Neutral
- Anxious
- Relaxed
- Tense
- Enthusiastic
- Suspicious

2. In your opinion, what is the likelihood of self-driving vehicles becoming widely used?

- Extremley Unlikely
- Unlikely
- Not sure
- Likely
- Extremely Likely
Lessons Learned

Collaboration
Key to developing solutions, and business case

Set the agenda for trials based on city requirements
• Build consensus around supporting solutions to problems

It won’t always work
• Innovation is risky, but failure can point to better solutions

Keep stakeholders informed
• Talk to citizens to build support and the solution design
Next Steps
Self Assessment – Consolidate and plan ahead?

<table>
<thead>
<tr>
<th>Mobility Aspect</th>
<th>Automation Awareness</th>
<th>Planning for Automation Readiness</th>
<th>Implementation of Automation Ready Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy</td>
<td>Policy screening: Lifeability as top priority - how can CoEX help contribute to it?</td>
<td>Reassessment of strategic mobility plans; incorporating new mobility forms</td>
<td>Mobility pricing for "ERM" roaming cars</td>
</tr>
<tr>
<td>Infrastructure</td>
<td>Is there a conflict between people friendly vs. automation friendly?</td>
<td>Preparation of physical and digital infrastructure</td>
<td>Modelling plans to infrastructure and accompanying traffic code</td>
</tr>
<tr>
<td>Planning</td>
<td>Engagement with citizens & support testing activities and research</td>
<td>Update travel demand models and evaluate road capacity needs</td>
<td>Assessment of required land use changes based on integrated and use and transport modelling tools</td>
</tr>
<tr>
<td>Capacity Building</td>
<td>Try out level 1 & 2 functionalities</td>
<td>Identify new skill requirements - less concrete more bytes</td>
<td>Organisational restructuring for traffic management and public transport operations</td>
</tr>
<tr>
<td>Traffic Management</td>
<td>Road authorities need to coordinate with OEMs</td>
<td>Back office for data exchange in traffic management</td>
<td>Defining data management responsibility with new management structures</td>
</tr>
</tbody>
</table>
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 723201.2

Brian Matthews
Brian.Matthews@Milton-Keynes.Gov.UK

#H2020CoEXist
@H2020_CoEXist

The sole responsibility for the content of this document lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the EASME nor the European Commission are responsible for any use that may be made of the information contained therein.
CoEXist Virtual Final Conference - Part 2: What next for Cities and CAVs?

Workshop: What next for cities and CAVs?

moderated by Siegfried Rupprecht, Rupprecht Consult

14:00 Welcome, Siegfried Rupprecht
14:05 Automation-ready framework for city authorities,
 Wolfgang Backhaus, Rupprecht Consult
14:20 CoEXist – Roadmap towards automation-ready cities
 Brian Matthews, Milton Keynes city council
 Susanne Scherz, city of Stuttgart
 Mikael Ivari, city of Gothenburg
 Frank van den Bosch, city of Helmond

15 min per speaker (including 3min Q&A)

15:20 Poll & self-assessment of automation-readiness
15:30 Interactive group discussion
 Key issues for cities, including change and expectations management, future proofing sustainable mobility policy, future proofing infrastructure investment and citizens engagement citizens.

15:50 Lessons learnt and conclusions, Wolfgang Backhaus, Rupprecht Consult
16:00 End of the session
Automation Readiness in the city of Stuttgart

Susanne Scherz, City of Stuttgart
Head of Road Traffic Authority

#H2020CoEXist
@H2020_CoEXist

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 723201-2
Welcome to Stuttgart

• State Capital of Baden Württemberg
• Good accessibility to highways, rail network, airport and water route

Some figures:
• inhabitants: 610,000
• workplaces: 470,000
• commuters: 260,000 p.d.
• incoming/outgoing vehicles 800,000 p.d.
• main roads: 500 km
• Centre of a polycentric region with 2.7 mio inhabitants, 1 mio workplaces and 160,000 companies
Starting point: Transport strategies

- SUMP (VEK 2030 + action plan), Green city master plan, Transport Development Plan, …
- Confirmed city goals “less emissions, congestion, stress” as well as the importance attractiveness for pedestrians and cyclists and liveable urban spaces
- Issue of AV addressed partly at present
 - How will AV change the traffic situation and urban spaces?
 - Will AV make transport in Stuttgart more efficient and more sustainable?
 - Is Stuttgart prepared for AV?
 - What is Stuttgart’s strategy?
Challenge: Transport planning

- **Reduction traffic volume / improvement modal-split**
 impacts of AV might be counter-productive (⇒ use case 7)

- **Traffic flow / capacities**
 impact not clear (⇒ use case 7)

- **PuT / ridepooling / ridehailing**
 chances for PuT providers but also stress scenario because of ride-hailing providers in level 5 scenario (⇒ use case 8)

- **Travel demand management**
 parking management might fail in future – alternatives?

- **Public space / road design**
 requirements unclear, e.g. areas for drop-on/-off zones

- **Public space / road design** will network for AV require road design not suitable to pedestrians, cyclists or attractive and liveable urban spaces

Source: City of Stuttgart
Findings: Transport planning

- According to use case 7 and 8 AV are a **challenge for urban transport planning** considering the goals ‘sustainable transport’ and ‘urban design’ in terms of an European City.

- Advantages and practicability will **vary** heavily depending on **local conditions** (further research for use case 7).

- Although, there is a **high uncertainty** about impacts and requirements, AV have to be considered in upcoming **mobility plans**.

- AV and their effects must be taken into account in **future legislative and standards procedures**. This applies e.g. to the planned liberalization of the Passenger Transport Act from the perspective of a **strong and efficient PuT in terms of services of general interest** (see use case 8 scenarios).
Challenge: Traffic management & control

- **Infrastructure / Car2X communication**
 which investments for infrastructure and systems are needed and reasonable with regard to company-driven and ongoing technical developments

- **Traffic management (strategies and operation)**
 cooperation strategies and interfaces for communication of strategies to be established and implemented

Source: OCA e.V.
Findings: Traffic management & control

- **Infrastructure / systems** open numerous possibilities for traffic flow optimization, road safety assistance and traffic management, not only for car transport but also for PuT, security services, up to all modes.

- Stuttgart will pursue the strategy of "forward-looking market observation" and advance the expansion of infrastructure / systems in accordance with the state of the art.

- In the field of traffic management, the Integrated traffic control centre (IVLZ), will continue to play a leading role in the development of strategies and standards.

- Sufficient resources for investment, operation, maintenance and personnel have to be ensured.

Source: City of Stuttgart, Thomas Hörner
Challenge: Automation-Readiness

- AV-Readiness is of **strategic importance** for Stuttgart in terms of transport planning and transport management strategies and as a business and research location.

- AV-Readiness addresses various municipal organisations with specific responsibilities and competencies.

- Technical, planning and regulatory requirements and frameworks are developing at **different speeds**.

- AV Readiness is of **varying importance** for the different departments and their daily work.

- AV-Readiness is a **complex process**.

<table>
<thead>
<tr>
<th>Dept. Strategic planning and sustainable mobility</th>
<th>Strategic planning, Project management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dept. Urban and transport planning</td>
<td>Urban and Transport planning, Traffic demand analysis, Road design, Planning drop on/-off areas</td>
</tr>
<tr>
<td>Road construction authority</td>
<td>Road building and maintenance, Road markings and signs, Traffic lights, Data exchange</td>
</tr>
<tr>
<td>Integrated traffic management centre (IVLZ)</td>
<td>Traffic situation analysis, Planning of traffic management strategies, Traffic management operations, Real time traffic information, Data exchange</td>
</tr>
<tr>
<td>Road traffic authority</td>
<td>Traffic regulations, Traffic safety, Construction site management, Permit for passenger transport, Traffic surveillance</td>
</tr>
<tr>
<td>Dept. Business development</td>
<td>Contact for business and research, Project acquisitions, Project management broadband development</td>
</tr>
<tr>
<td>Dept. e-governement</td>
<td>Mobile networks coverage</td>
</tr>
<tr>
<td>Environmental Agency</td>
<td>Weather and environment data and forecast</td>
</tr>
<tr>
<td>Public transport authority (SSB)</td>
<td>Public transport planning and operation, Real time traffic data</td>
</tr>
</tbody>
</table>

...
Findings: Automation-Readiness

- **Projects at various levels** are already being implemented in the fields of **infrastructure / car2x communication** and **traffic management** as well as in **PuT**. The area of transport planning is not yet affected in the course of daily work, as the framework conditions are too unclear.

- **An overall coordination** and **an implemented knowledge transfer** are essential due to the complexity and variety of tasks and competencies.

- **An common strategy and roadmap** for AV-Readiness is **needed**.
Automation-ready Action Plan Stuttgart

• By the time of defined standards the city of Stuttgart accompanies the developments on all levels - from legal frameworks to technical infrastructure: **critically but constructively**

• Automation-readiness must be understood as a **long-term process**. This process is depending on various external settings, especially legal frameworks and company-driven decisions on technical standards.

• A common understanding and reflection of all recently known chances and risks for AV driving in a city is needed as a basis for a **knowledge-based proceeding**.
Automation-ready Action Plan Stuttgart

- Concerning the complexity and dynamic of Automation-readiness an **overall working structure** guarantees the necessary exchange of information, knowhow, or activities. Such a working structure enables a municipality to deal with dynamic settings and to work and agree on a strategic approach.

- Currently, **pilot projects and test operations** enable the successive development of competencies. At the same time, this approach addresses the framework conditions and standards still open (e.g. technical standards, legal framework).

- Therefore and because of future tasks, appropriate **resources** must be provided proactively, such as specific experts in various administrative units.
CoEXist Virtual Final Conference - Part 2: What next for Cities and CAVs?

Workshop: What next for cities and CAVs?

moderated by Siegfried Rupprecht, Rupprecht Consult

14:00 Welcome, Siegfried Rupprecht
14:05 Automation-ready framework for city authorities, Wolfgang Backhaus, Rupprecht Consult
14:20 CoEXist – Roadmap towards automation-ready cities
 Brian Matthews, Milton Keynes city council
 Susanne Scherz, city of Stuttgart
 Mikael Ivari, city of Gothenburg
 Frank van den Bosch, city of Helmond

15 min per speaker (including 3min Q&A)

15:20 Poll & self-assessment of automation-readiness
15:30 Interactive group discussion
 Key issues for cities, including change and expectations management, future proofing sustainable mobility policy, future proofing infrastructure investment and citizens engagement citizens.

15:50 Lessons learnt and conclusions, Wolfgang Backhaus, Rupprecht Consult
16:00 End of the session
A journey towards automation readiness: past, present and future approach

Mikael Ivari, City of Gothenburg

#H2020CoEXist
@H2020_CoEXist
Six years ago
Planning
Gothenburg Use Cases
(Physical) and Digital Infrastructure
Capacity building

Data Market
Online store for different data
API Management and Provisioning, Service Catalogue, Developer support

Data Management Framework
Tools for collecting, storing and processing different kinds of data

Security and privacy
Tools for anonymization and pseudonymization of data, compliance with GDPR, communication and storage encryption

Platform Management
Tools for logging, monitoring, orchestration or device management functions

New solutions and applications

Proprietary network/systems

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 723201-2
Traffic Management

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 723201-2
Is Gothenburg Automation-ready?

<table>
<thead>
<tr>
<th>Mobility Aspect</th>
<th>Automation Awareness</th>
<th>Planning for Automation Readiness</th>
<th>Implementation of Automation Ready Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy</td>
<td>Policy screening: Liveability as top priority - how can CAVs contribute to it?</td>
<td>Reassessment of strategic mobility plans; incorporating new mobility forms</td>
<td>Mobility pricing for "SPAM" roaming cars</td>
</tr>
<tr>
<td>Infrastructure</td>
<td>Is there a conflict between people friendly vs. automation friendly?</td>
<td>Separation of physical and digital infrastructure</td>
<td>Modifications to infrastructure and accompanying traffic code</td>
</tr>
<tr>
<td>Planning</td>
<td>Engagement with citizens & support testing activities and research</td>
<td>Update travel demand models and evaluate road capacity need</td>
<td>Assessment of required land use changes based on integrated land use and transport modelling tools</td>
</tr>
<tr>
<td>Capacity Building</td>
<td>Try out level 1 & 2 functionalities</td>
<td>Identify new skill requirements – ‘less concrete more bytes’</td>
<td>Organisational restructuring for traffic management and public transport operations</td>
</tr>
<tr>
<td>Traffic Management</td>
<td>Road authorities need to engage with OEMs</td>
<td>Back office for data exchange in traffic management</td>
<td>Defining data management responsibility with new management schemes</td>
</tr>
</tbody>
</table>
Our strategic approach

- Develop digital infrastructure
- Develop road authority services based on vehicle and/or 3rd party data
- Connect and prepare signal controllers for C-ITS services
- Facilitate CAV testing
- Assess and prepare for new CAV services
CoEXist Virtual Final Conference - Part 2: What next for Cities and CAVs?

Workshop: What next for cities and CAVs?
moderated by Siegfried Rupprecht, Rupprecht Consult

14:00 Welcome, Siegfried Rupprecht
14:05 Automation-ready framework for city authorities,
Wolfgang Backhaus, Rupprecht Consult

14:20 CoEXist – Roadmap towards automation-ready cities
Brian Matthews, Milton Keynes city council
Susanne Scherz, city of Stuttgart
Mikael Ivar, city of Gothenburg
Frank van den Bosch, city of Helmond

15 min per speaker (including 3min Q&A)

15:20 Poll & self-assessment of automation-readiness
15:30 Interactive group discussion
Key issues for cities, including change and expectations management, future proofing sustainable mobility policy, future proofing infrastructure investment and citizens engagement citizens.

15:50 Lessons learnt and conclusions, Wolfgang Backhaus, Rupprecht Consult
16:00 End of the session
Current Helmond Policy

Helmond mobile 2005-2015

Optimizing the use of existing infrastructure

Helmond Connected 2016-2025

Urban traffic solutions
technology driven: ITS

Active support of smart mobility
pilots and showcases
Today
Test Road A270
Participation in European Projects

- FABULOS
- AUTOPILOT
- C-MOBILE
- CoEXist
- MAVEN
Learning by doing

Triple Helix is very important

Helmond together with the business community and educational institutions invests to maintain and expand its head position in Smart Mobility.

- Sustainable and Smart Mobility solutions
- New Employment and Economically reinforcement
Automation-ready Forum
Self-assessment

<table>
<thead>
<tr>
<th>Mobility Aspect</th>
<th>Automation Awareness</th>
<th>Planning for Automation Readiness</th>
<th>Implementation of Automation Ready Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy</td>
<td>Policy screening: Livability as top priority - how can CAVs contribute to it?</td>
<td>Reassessment of strategic mobility plans; incorporating new mobility forms</td>
<td>Mobility pricing for “SPAM” roaming cars</td>
</tr>
<tr>
<td>Infrastructure</td>
<td>Is there a conflict between people friendly vs. automation friendly?</td>
<td>Preparation of physical and digital infrastructure</td>
<td>Modifications to infrastructure and accompanying traffic code</td>
</tr>
<tr>
<td>Planning</td>
<td>Engagement with citizens & support testing activities and research</td>
<td>Update travel demand models and evaluate road capacity needs</td>
<td>Assessment of required land use changes based on integrated land use and transport modelling tools</td>
</tr>
<tr>
<td>Capacity Building</td>
<td>Try out level 1 & 2 functionalities</td>
<td>Identify new skill requirements - less concrete more bytes</td>
<td>Organisational restructuring for traffic management and public transport operations</td>
</tr>
<tr>
<td>Traffic Management</td>
<td>Road authorities need to engage with OEMs</td>
<td>Back office for data exchange in traffic management</td>
<td>Defining data management responsibility with new management schemes</td>
</tr>
</tbody>
</table>
Automation Awareness

Participation in European projects
Learning by doing

Planning for Automating Readiness

Helmond believes in ISA to be a great benefit for road safety

Implementation of Automation Ready Measures

Still it’s unknown what AV’s require to drive (in cities) so it’s difficult to set measures
Automation Awareness

AV’s or ITS needs communication that’s why helmond invests in communication in traffic lights

Planning for Automating Readiness

Hybrid communication for traffic lights (G5 and 4G/ wifi and cellular)

Implementation of Automation Ready Measures

I-VRI which can send messages C2I and I2C
Automation Awareness

Participating in European projects with Av’s and being a living lab for experiences

Planning for Automating Readiness

By participating in projects we gain experience and are able to focus more on future policies and plans.

Implementation of Automation Ready Measures

Wherever possible we do try to implement things that have been developed in projects in order to realise Quick wins
Automation Awareness

Participating in projects with mainly employees of the traffic department there is a lot of experience and knowledge gathered the last years

Planning for Automating Readiness

More consultation and cooperation is necessary with other authorities or companies

Implementation of Automation Ready Measures

Experience should be wider spread among politicians and other departments
Automation Awareness

Lack of standardisation, harmonisation but also lack of clarity about which information automated vehicles need make it difficult to optimise, store and make accessible which data.

Planning for Automating Readiness

Helmond is starting a new program this year “De Digitale Stad” (the digital city). A change to get and to provide more data regarding to traffic and Av’s.

Implementation of Automation Ready Measures

The implementation of I-VRI’s, where vehicles can communicate with traffic lights.
Lessons Learned and the coming years

• Revised expectations not only focus on AV
• Quick wins
• Involve a larger audience
• Organization
• Attract business to Helmond
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 723201.

Frank van den Bosch
f.van.den.bosch@Helmond.nl

#H2020CoEXist
@H2020_CoEXist

The sole responsibility for the content of this document lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the EASME nor the European Commission are responsible for any use that may be made of the information contained therein.
Poll question

What are the three largest barriers to developing automation policies/strategies?

- Lack of knowledge (within own organisation)
- Low support from leaders (within own organisation)
- Insufficient resources (funding)
- Lack of knowledge (external, e.g. consultants)
- Low national government support
Poll question
How would you assess the level of automation-readiness for your city or organisation?

- Extremely low
- Low
- Regular
- High
- Extremely high
CoEXist Virtual Final Conference - Part 2: What next for Cities and CAVs?

Workshop: What next for cities and CAVs?

moderated by Siegfried Rupprecht, Rupprecht Consult

14:00 Welcome, Siegfried Rupprecht
14:05 Automation-ready framework for city authorities,
Wolfgang Backhaus, Rupprecht Consult

14:20 CoEXist – Roadmap towards automation-ready cities
Brian Matthews, Milton Keynes city council
Susanne Scherz, city of Stuttgart
Mikael Ivari, city of Gothenburg
Frank van den Bosch, city of Helmond

15 min per speaker (including 3min Q&A)

15:20 Poll & self-assessment of automation-readiness

15:30 Interactive group discussion
Key issues for cities, including change and expectations management, future proofing sustainable mobility policy, future proofing infrastructure investment and citizens engagement citizens.

15:50 Lessons learnt and conclusions, Wolfgang Backhaus, Rupprecht Consult

16:00 End of the session
Interactive group discussion

Wolfgang Backhaus, Rupprecht Consult

#H2020CoEXist
@H2020_CoEXist

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 723201-2
Mentimeter

- Go to www.menti.com on your computer, tablet or smart phone
- Enter the code (it will be shown on the screen shortly)
- Follow the instructions and participate!
CoEXist Virtual Final Conference - Part 2: What next for Cities and CAVs?

Workshop: What next for cities and CAVs?

moderated by Siegfried Rupprecht, Rupprecht Consult

14:00 Welcome, Siegfried Rupprecht

14:05 Automation-ready framework for city authorities, Wolfgang Backhaus, Rupprecht Consult

14:20 CoEXist – Roadmap towards automation-ready cities

Brian Matthews, Milton Keynes city council
Susanne Scherz, city of Stuttgart
Mikael Ivari, city of Gothenburg
Frank van den Bosch, city of Helmond

15 min per speaker (including 3min Q&A)

15:20 Poll & self-assessment of automation-readiness

15:30 Interactive group discussion

Key issues for cities, including change and expectations management, future proofing sustainable mobility policy, future proofing infrastructure investment and citizens engagement citizens.

15:50 Lessons learnt and conclusions, Wolfgang Backhaus, Rupprecht Consult

16:00 End of the session
Lessons learnt and conclusions

Wolfgang Backhaus, Rupprecht Consult

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 723201-2
How to tackle the imminent disruption to mobility generated by CAV deployment?

- Authorities should look at planning for CCAM as an element of a more **fundamental change process: proactive action** to get ready for the challenges of conducting planning processes towards CAV deployment.

- Planning for CCAM should be **based on analyses of all modes** and supported by all **stakeholders** (and not on an SAE perspective).

- Transport and infrastructure planning through adequate tools: **automation-ready modelling functionalities & impact assessment** framework, with strategically defined **Key Performance Indicators** in relation to **local policy goals**.

- In addition to (old) risks, **new opportunities** for sustainable urban development arise – spur **flexibility** and create **room for experiments**.
Next webinar!

Automation-ready road infrastructure assessment

Learn more from CoEXist’s automation-ready infrastructure assessment tool and safety assessment methodology!

To be scheduled: April 2020

https://www.h2020-coexist.eu/events/#upcoming-events
Learn more from CoEXist!

Find all our previous webinars in our YouTube channel at:

http://tiny.cc/CoEXist-Webinars
CoEXist Partners

RUPPRECHT CONSULT Forschung & Beratung GmbH

VEDECOM DU VÉHICULE DÉCARBONÉ ET COMMUNICANT ET DE SA MOBILITÉ

PTV GROUP

Universität Stuttgart

ID4CAR

tass international

UNIVERSITÀ DEGLI STUDI FIRENZE

vti

POLIS CITIES AND REGIONS FOR TRANSPORT INNOVATION

City of Gothenburg

STUTTGART

milton keynes council

Gemeente Helmond

www.h2020-coexist.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 723201-2
Thank you for your attention!

Get in touch with us!

CoEXist Coordination:
Dr. Wolfgang Backhaus
w.backhaus@rupprecht-consult.eu

Daniel Franco
d.franco@rupprecht-consult.eu

www.h2020-CoEXist.eu

@H2020_CoEXist
#H2020_CoEXist