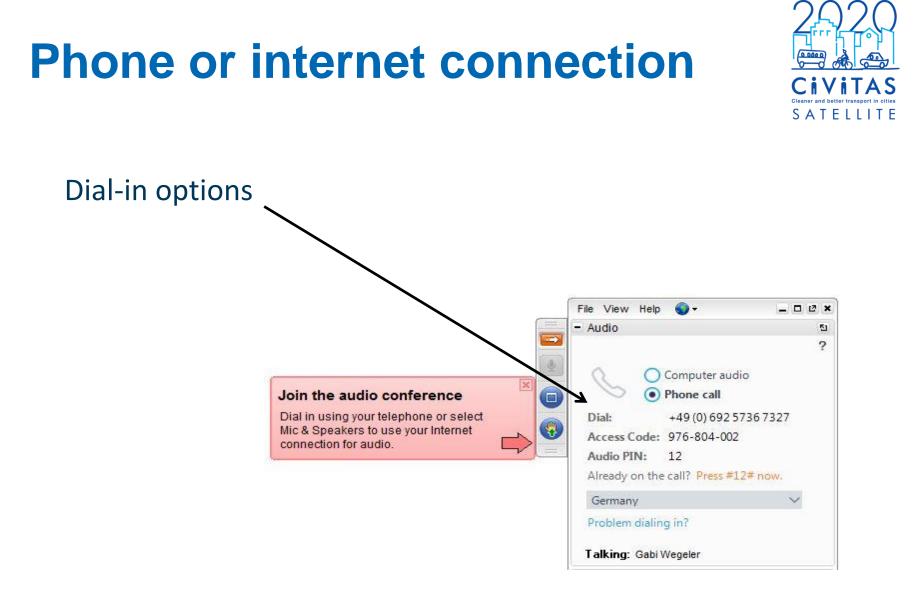


These projects have received funding from the European Union

Introduction to Connected and Automated Driving (CAD) in Cities


How can cities prepare for CAD?

Monday, 26 February 2018 12:00 – 13:30

Moderator:

Siegfried Rupprecht

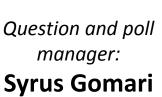
Executive Director, Rupprecht Consult



Participation tools

Download handouts

	File Options View Help	×		
	Audience view	≅I×		
	Sharing	2		
	Webcam and Video	21 ×		
	Audio	2		
•	Dashboard	n ×		
	Attendees: 3 out of 1001	≊1×		
-	 Polls (0/1) 	\times E		
0	▶ Questions	× 13		
	 Handouts: 2 of 5 	≌×		
9	FAQs review.doc	÷		
Ø	graph.png	Ê		
	Drag & drop a file	Choose a file		
	▶ Chat	P1 V		
	New Tab	× \		
	$\langle \cdot \rangle \mathbf{G} \circ$			🖈 🗣 🖬 🗄
	De- 01-5 07			
	Graph.png	^ ₭ FAQs review.doc	·	Show all X



The webinar team

Technology manager: Daniel Franco

Moderator: Siegfried Rupprecht

Presenters

Bernard Gyergyay Rupprecht Consult

Brian Matthews Milton Keynes Council

Adriano Alessandrini University of Florence

Webinar Structure

- 12:00 12:15 Introduction
- 12:15 12:35 Automation: how far are we? How can we start preparing?
- 12:35 12:55How a mid-size city is preparing for
CAD? The case of Milton Keynes, UK
- 12:55 13:15 What is the role of automation in public transport?
- 13:15 13:25 Open discussion

13:25 – 13:30 Wrap-up

Instructions for questions

- Use the question box feature at anytime and the question manager checks it and forwards the question
- Short Q&A (3-5 minutes) after each presentation
- There will be a 10-15 minute open discussion and questions at the end of webinar

Poll question 1

What is your profession and background?

- Urban transport planner in public authority
- Consultant/ Adviser
- Public transport operator/ mobility service provider
- Research institution/ University/ Recent graduate
- Other (e.g. technology companies, OEMs, etc.)

Poll question 2

Are you familiar with CIVITAS or have attended a CIVITAS conference?

YesNo

These projects have received funding from the European Union

Expectations (and myths) about Automated Driving in cities

+ Sector ageing	 Unclear impacts in cities
+ Mobility scherology low-demand	- More d in 20?obility
+ Cost saving in Public 4. Transport	in do? hobility cities traffic, more ngestion aintic security
+ Boost for sh what of mobility	- Angestion - Anti- Security issue
+ Isafety	– Urban sp
+ Beaer use of urban space	 Unresolved etm questions

This webinar

- Aims:
 - contribute to an informed debate about automation
 - start discussion what **urban mobility stakeholders** can do
 - help cities prepare policies.
- Today's agenda
 - introduction to automation
 - example of a mid-sized city preparing for automation
 - role of automation in **public transport**
- ... to be continued?

These projects have received funding from the European Union

Automation: how far are we? How can we start preparing?

Bernard Gyergyay

Consultant, Rupprecht Consult Project Coordinator, CoEXist

Introduction to Connected and Automated Driving (CAD) in Cities

How can cities prepare for CAD?

Monday, 26 February 2018 12:00 – 13:30

Agenda

- Technology and Terminology
- Uncertainties for CIVITAS cities
- Concept of 'Automation-Readiness'
- 'Automation-Ready' Measures and Policies

Poll question 3

How would you rate your knowledge on urban transport automation?

1 – beginner
2
3
4
5 – expert

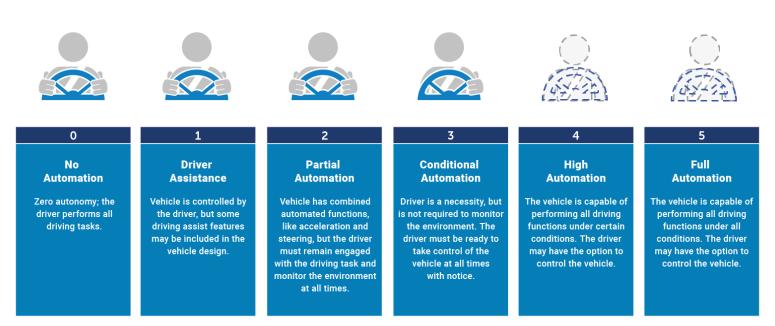
These projects have received funding from the European Union

The public image of automation

Private Vehicles

C-ITS, V2V, V2I & V2X

Human-in-the-loop Automation



Terminologies

SOCIETY OF AUTOMOTIVE ENGINEERS (SAE) AUTOMATION LEVELS

Full Automation

SAE levels in the urban transport context

- Need to be understood in the context of an 'Operational Design Domain':
 - A vehicle today can achieve SAE level 4 in the right ODD, but this might require significant changes to the physical and digital road infrastructure.
- SAE levels are **not as relevant** for urban transport planning as many think:
 - SAE describes the interaction between the "driver/passenger" and the AV, but it does not describe the '**operational purpose**' of the vehicle.

The basic scenarios

Automated Private vehicles

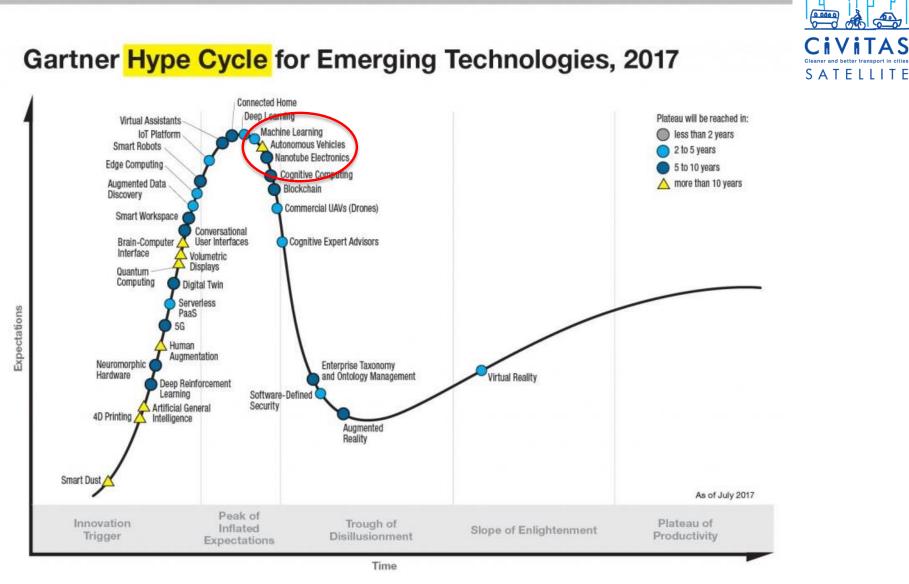
- Continuous development of driver assistance systems (SAE Level 2 - 4)
- Modal shift to automated private vehicles
- Increase in VMT

Automated, shared vehicles

- SAE Level 4 5
- Vehicles available on demand
- Empty trips to relocate
- Decrease in privately owned vehicles

Automated public transport

- SAE Level 4
- Automated feeder systems for public transport core network
- More attractive
 public transport

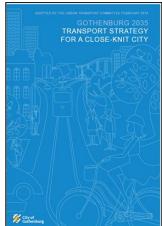

Poll question 4

When do you think will connected and automated driving (CAD) become widespread in your city?

- o 0-5 years
- o 6-10 years
- o 11-20 years
- o 21-30 years
- o 31++ years

These projects have received funding from the European Union

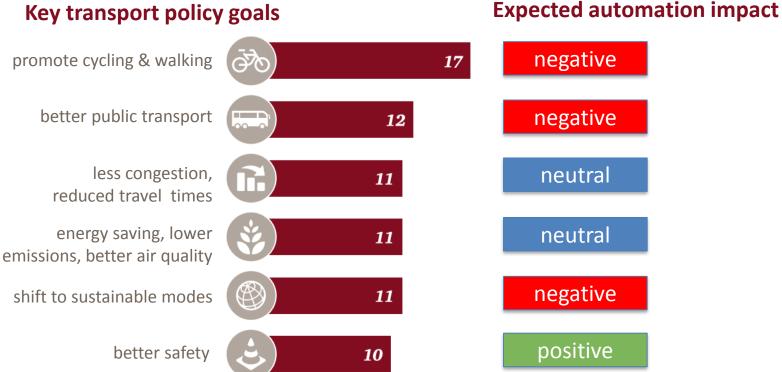
20



Uncertainties for cities

- Which **expectations for implementation** in cities are realistic in the current hype (availability, functions, safety)?
- What is the **timeframe** for implementation? (level 5 sharing systems are still far away, but level 4 public transport with adjusted infrastructure is possible).
- What are (connected) infrastructure requirements ?
- How can we organise the (long and messy) transition period?
- What is the impacts in vehicle kilometres: increase or decrease?
- Result of uncertainties → CAVs are not mentioned in transport plans/ SUMPs or other strategic transport planning documents

Poll question 5


Within your city's sustainable urban mobility plans (SUMPs), how much detail is included in preparing for CADs?

- Not at all/ I do not know
- Acknowledgement, no detail
- Some inclusion, with limited detail
- High degree, with detail

These projects have received funding from the European

Example: The major goals of urban transport policy of German cities... SATELLTE

Key transport policy goals

N=21; max 5 responses per participant

Source: Hasse/ Heinrichs - Digital mobil in Deutschlands Städten (2017)

Poll question 6

Do you think automation supports your city's mobility and sustainability goals?

- No, it is against some of our goals
- No, the disadvantages outweigh the benefits
- Yes, but only in specific contexts
- Yes, it supports all our goals
- Uncertain/ too early to say

These projects have received funding from the European

CoEXist


Project Facts

- Programme: EU Horizon 2020 (ART 05)
- Duration: May 2017 April 2020
- Total Budget: 3,474,065 €
- 15 partners from 6 European countries
- Strategic Misson:

To systematically increase the capacity of European local authorities and other urban mobility stakeholders **to get ready for the transition** towards a shared road network with increasing penetration rates of CAVs

Definition for "Automation-Readiness"

• Our current definition:

"Automation-ready is defined as conducting transport and infrastructure **planning for automated vehicles in the same comprehensive manner as for existing modes** such as conventional vehicles, public transport, pedestrians and cyclists, while ensuring **continued support for existing modes and higher level mobility goals**."

- Specific modes may require adapted definitions.
- Definitions will have to be modified over time.
- Today, cities don't have to be "automation-ready", but "automation-aware".

SATELLTE

CoEXist Approach

Automation-ready <u>transport modelling</u>: Validated extension of existing microscopic and macroscopic **transport models** to include different **types of CAVs** (passenger car/ light-freight vehicle, automation levels).

Automation-ready <u>road infrastructure</u>: Tool to assess the **impact of CAVs** on safety, traffic efficiency and space demand. **Design guidance** for hybrid (CAV-/CV-shared) infrastructure.

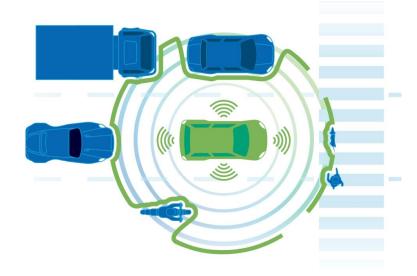
畿

Automation-ready <u>road authorities</u>: Elaboration of eight **use cases** (Gothenburg, Helmond, Milton Keynes and Stuttgart) with **automation-ready action plans**.

Enabling "Automation-Ready" Transport Planning

www.h2020-coexist.eu @H2020_CoEXist

Automation-Ready Local Authorities



CoEXist Automation-Ready framework

- Guidance on issues like technology, impacts and measures
- Clear-headed and informed decisions about automation
- Automation FAQ for cities
- **First version** currently in development

Automation-ready action plans:

- Bottom-up local stakeholder process Automation-ready Fora
- Action Plan: Now, 5 years, 10 years
- Annex to strategic transport plans (e.g. SUMPs)

"Automation Awareness" Measures in next 5 years

- Measures in next 5 years ("Automation Awareness")
 - inform stakeholders about technologies and potential/risks of automation
 - estimate potential contribution of "driverless vehicles" to achieve city goals
 - establish communication/ cooperation with other actors interested in automation (e.g. vehicle manufacturers)
 - plan/ implement pilot measures and tests
 - support open data exchange
 - <u>massively promote sharing, public transport, non-motorised</u> <u>transport</u> ("new mobility culture")

Automation Strategy Formulation Medium-term measures: 5 - 10 years

Medium-term measures: 5 - 10 years ("Automation Strategy Formulation")

- update of transport model (demand model), formulate and modell scenarios
- initiate innovations:
 - qualify employees
 - make synergies concrete (public transport, freight transport/city logistics, energy sector, municipal services, e. g. waste collection)
- infrastructure planning
 - evaluate capacity requirements of traffic routes, technical infrastructures (e.g. C-ITS) and vehicle fleets
 - consider maintenance, resilience, liability requirements
- management/ reorganisation of public space
 - secondary impacts of automated corridors
 - road space, parking space, distribution of goods, delivery, mobility hubs
- formulate integrated concepts for collective, automated, electric (and inclusive) mobility
- **pilot trials** pragmatic, small steps, systematically building critical mass, expectation management, business case, data management

Automation Implementation Long-term measures: 10 - 20 years

Long-term measures: **10 - 20 years ("Automation Implementation")**

- institutional adjustments (e.g. "MaaS agency")
- **infrastructure adjustments** (e. g. road markings, speed limits)
- (re-)building collective mobility services
- tenders for automated PT fleets
- specific policy measures for automated services, e. g. pricing of empty runs

Conclusions

An (automation-ready) **transport policy** should be the basis for infrastructure planning and deployment.

- Cities can act now, automation awareness
- Lack of a policy framework will create inefficiencies and frustration.
- Automation needs to be defined from a policy perspective, and not from an SAE perspective.
- A **common vision** for automation and goals should identify expectations.
- Policy development should be based on analyses and supported by all stakeholders.

Thank you for listening!

Bernard Gyergyay b.gyergyay@rupprecht-consult.eu

These projects have received funding from the European Union

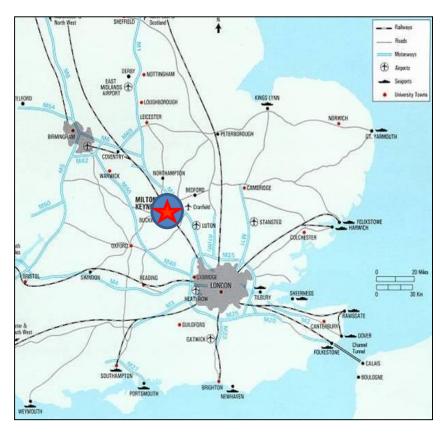
These projects have received funding from the European Union

How can a mid-size city prepare for CAD? The case of Milton Keynes, UK

Brian Matthews

Head of Transport Innovation, Milton Keynes Council

Introduction to Connected and Automated Driving (CAD) in Cities


How can cities prepare for CAD?

Monday, 26 February 2018 12:00 – 13:30

Milton Keynes - Location

- New Town started in 1967
- Midway between London
 & Birmingham and Oxford
 & Cambridge.
- Well connected to national transport networks
- Centre of new
 Oxford Cambridge Arc

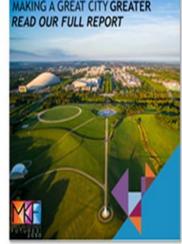


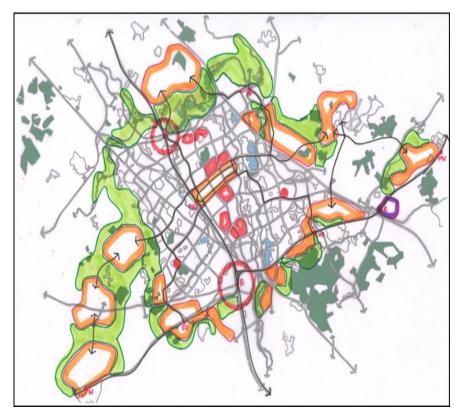
Rapid and Sustained growth

These projects have received funding from the European Union

Challenge?

These projects have received funding from the European Union




MK Futures – 2050 Making a Great City Greater

MK Futures 2050 Commission: "Making a Great City Greater"

- Vision for Inclusive Growth to around 400,000 people by 2050
- · Recommended:
 - Strategy for 2050
 - Six Big Projects to address challenges facing the city over the coming decades
- Project 4: smart, shared sustainable mobility

Milton Keynes – 2050 development pattern?

Refresh (Transport) Mobility Strategy

Highways & Transportation Group

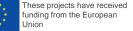
Mobility Strategy for Milton Keynes 2018-2036 (LTP4)

Mobility for All (Consultation Draft)

November 2017

www.mitton-keynes.cov.uk/transport-policy

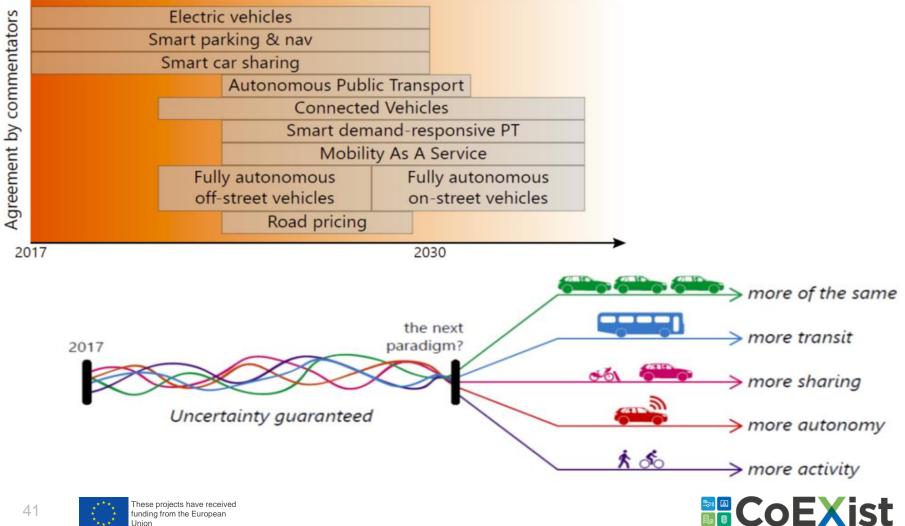
Emphasis


Mobility for all

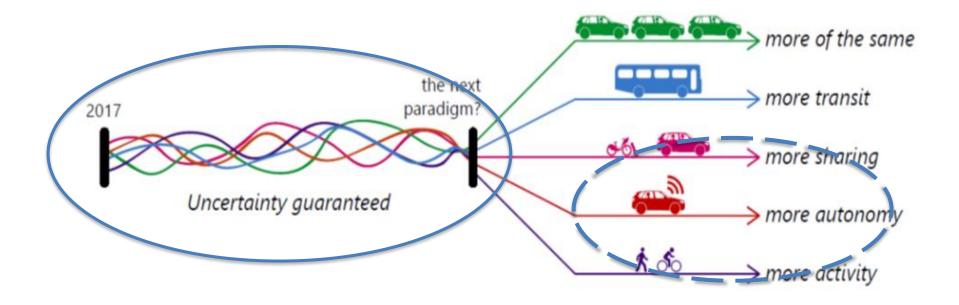
SATELLITE

- Mobility as a Service concept
- Clear endorsement of using technology as a primary tool to support mobility
- Defines transition goals
- Introduces and develops business case for this

Poll question 5


Within your city's sustainable urban mobility plans (SUMPs), how much detail is included in preparing for CADs?

- Not at all/ I do not know
- Acknowledgement, no detail
- Some inclusion, with limited detail
- High degree, with detail



These projects have received funding from the European

Project 4 : Smart Sustainable Shared Mobility

Project 4 : Smart Sustainable Shared Mobilit Roadmap

UK Autodrive - Case Study

Milton Keynes leading the way in partnership with Coventry and the motor industry

Leadership

Cities Programme Lead Partners

- Milton Keynes Council
 Supported by
- Cambridge University
- Oxford University

Primary Aim

To determine long term benefits and application of autonomous vehicles to the urban environment

Setting the Agenda

Hypothesis

Connected & driverless cars could have a significant role, providing safe, efficient and low carbon mobility to the public

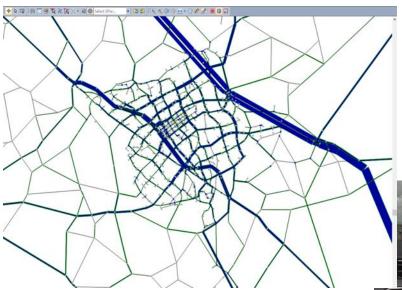
- Safety
- Productivity
- Capacity
- Mobility

Key Questions specific to MK Strategy

- In Milton Keynes....
- In a future scenario of 100% AVs what would the impact be on congestion in the city?
- What if any would improvements in mobility would a first/ last mile low speed AV passenger transport system deliver?
- What is the likely business case for L-SATS?
- What is the public view and what is the direction of travel in opinion?

Poll question 7

What do you think is/are the primary reason/s for developing CAD? (select all that apply)


- Improving safety
- Improving productivity
- Reducing congestion
- Increasing mobility options
- None of the above / other

These projects have received funding from the European

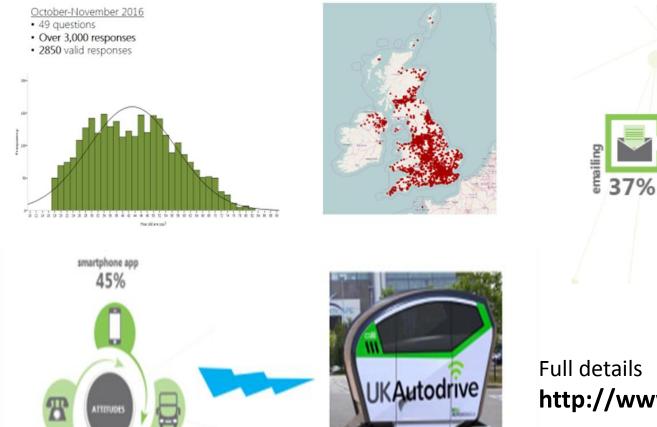
Can CAVs Improve capacity?

Practical Application

L-SATS

Can we demonstrate in a real place that Low-Speed Autonomous Transport System (PODS) can improve City Centre mobility

Avebury Boulevard



Working with the Public

22% viewing scenery

eating/drinking

home phone

27%

bus stop

Full details http://www.ukautodrive.com

35%

35%

calls

hone

Lessons Learned

- Technology is still in development, and in some areas not as mature as some would have you believe.
- Legal, regulatory and insurance issues are <u>very</u> <u>important</u>, but they should not be insurmountable barriers stopping you from moving forward
- We found insurers, and legal partners want to help it is their future business model!
- Likewise car manufacturers want to work with cities to get a understanding of future markets.

Considerations for other cities

- Take advantage of the positions cities have in driving the CAV agenda (framework) forward.
- Understand what you want to achieve, and articulate as a vision/plan – or demonstrate how it can accelerate current plans
- Collaboration is key however it is often funding or business opportunities bring partners together
- Work with national bodies (Govt/Industry) to support local agenda, grasping current opportunities
- Take advantage of general support being shown from public.

- City providing clarity and leadership in setting the agenda
- Actively exploring use of technology in mobility to ensure that the city can developed in line with short and long term vision.
- Plan making beginning to working at detailed level to enable deployment of technology

Thank you for listening!

Brian Matthews Brian.Matthews@Milton-Keynes.gov.uk

These projects have received funding from the European Union

What is the role of automation in public transport?

Adriano Alessandrini

Associate Professor of Transportation, University of Florence, Italy CityMobil2 project coordinator

Introduction to Connected and Automated Driving (CAD) in Cities

How can cities prepare for CAD?

Monday, 26 February 2018 12:00 – 13:30

Poll question 8

How and where should automation FIRST be deployed to rip the most benefits?

- o In privately owned vehicles
- Ride sharing (e.g. Uber) and vehicle sharing (e.g. car2go)
- Road-based public transport (e.g. buses, shuttles)
- None of the above/ other forms

These projects have received funding from the European

Poll question 9

How significant of an impact do you think automation could have on public transport (PT)?

- 1 none: it will not change anything
- 2 low: could support PT, but I'm not sure
- 3 medium: could lead to new PT services
- 4 high: will make PT more attractive compared to others
- o 5 significant: will transform PT as we know it

These projects have received funding from the European

Automation is ready for public transport and not yet for private one

- Door-to-door
- From anywhere to anywhere
- Using any infrastructure
- No supervision

- Multimodal
- On pre-selected routes
- Only on certified (adapted) infras
- Full supervision

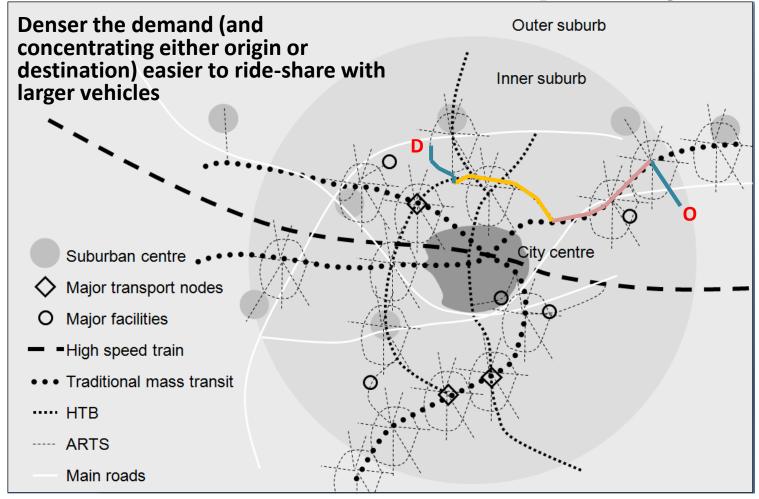
How does it translate in technical terms and why is PT readier

- Dealing with failures
 - Redundancy vs. fail safe
- Dealing with other users
 - Forecast user behavior vs. integrated safety assessment
- Dealing with external problems
 - Recognizing police and roadworks vs. communicating with the control room

First and last mile services, lessons learned from CityMobil2

- In CityMobil2 we transported more than 60 thousand passengers on low-speed last mile shuttles on shared urban street
- We learned that:
 - Technically PT automation it is feasible
 - It is safe ONLY if designed so with a thorough urban integration study
 - Speed is crucial for everything from customer satisfaction to financial appraisal
 - Though we enable services in "low demand areas" ridership is crucial to the service success

What does it mean to have certified infrastructures?



 The example of a street in Delft conceived for road safety but perfectly responding to the safety criteria of automated road transport

The main problems of Public Transport and how automation can help today

Which services first

- Ride-shared cars to the train stations in the cities' outskirts to be relocated empty using either automation or platooning (depending on the local legal framework)
- Small (30 places) electric busses to operate on demand for the last mile (with a driver if legally necessary) and then platooned at high speed (70km/h) on high capacity corridors.
- And both services can be provided retrofitting existing vehicles with very limited or no investments at all

Conclusions

- Automation is here to stay ... and it will be disruptive
- The existing business models for cities, transit operators and car makers will cease to exist
- A new blurred ride services will replace them all.
- If cities and transport operators move now they will have 5-7 years to shape the future pushing shared transport and city livability
- If they let car makers have their way they will provide in 5-10 years A-taxi services all over destroying public transport and clogging cities with congestion and pollution

Thank you for listening!

Adriano Alessandrini adriano.alessandrini@unifi.it

These projects have received funding from the European Union

Key measures to be taken in the next 15 years categorized into different aspects of mobility

Mobility aspect	0-5 years	5-10 years	10-15 years
Policy	Liveability needs to remain as the top priority	Incorporation of CAVs into city mobility goals	
		Mobility pricing for "SPAM" roaming cars Avoid segregation or prioritisation of CAVs over public transport and active modes	Taxation changes for mobility
	Support testing activities and research incl. legal and regulatory activities		(Potential) area and vehicle occupancy based road pricing
Infrastructure	Preparation of physical and digital	Reallocation of on-street parking to green and public spaces	Land use changes
	infrastructure Digital infrastructure needs to transition to open access		Modifications to infrastructure and accompanying traffic code (e.g. lane markings, minor changes of infrastructure designs, speed limits, lane width)
Planning	Proactive planning	Update travel demand models and evaluate road capacity needs Assess public transport plans and fleet requirements considering CAV	Integration of solutions in mobility: electric, intelligent, automated, shared, inclusive Assessment of required land use changes based on integrated land use and transport modelling tools
	Planning for adaptability and flexibility to technology		
	Stakeholder engagement process to encourage cross-sectoral collaboration and coordination	first and last mile solutions	
		Integration of solutions in mobility: electric, intelligent, automated, shared, inclusive	
Capacity Building for Transport Authorities	Stay educated on mobility technology progress	Reassessment of strategic mobility plans; incorporating new mobility forms	Training for traffic management and public transport operations
			Restructuring of internal departments (e.g. information technology department, Mobility as a Service (MaaS) department)
Traffic Management	Road authorities need to be more involved in the discussion and	Back office for data exchange in traffic management	Defining data management responsibility with new management schemes
			New schemes of deploying municipal services, maintenance and logistics traffic at night in the urban area if autonomous functionality is available

Thank you for listening!

Further questions?

Contact

Syrus Gomari s.gomari@rupprecht-consult.eu

These projects have received funding from the European Union