Integrating electric road vehicles with public transport electrical infrastructure in London

David Talbot, European Research Coordinator, City Planning.
London Context

- Fast growing city
- Air quality
- Political will
- EV uptake
- Electricity demand and distribution
Electrifying London Bus Routes

- Overnight or opportunity charging
- Operational schedules
- 675 routes, >9000 buses, ~90 garages, annually almost 0.5Bn km travelled and 2Bn passenger journeys served
TfL electricity infrastructure

- London Underground (LU) Electricity Grid
 - Major AC and DC electricity grid across the city
 - Sometimes deeply buried
 - Demand constrains from underground operations
 - Operating rules
Using the LU AC Grid for EV Charging

• Complex interplay of supply and demand

• High reliability and redundancy but dirty power

• Very tightly constrained operating rules

• Cost of groundworks

• Proof of concept
Validating the connection

- Ensure no detrimental effects on grid reliability
- Ensure charge points will operate from LU grid
- 6 7kW charge points
- Stepped approach to acceptance testing
- Vehicles integrated into regular fleet operations
Case Study: Route 74 Baker St to Putney Exchange

<table>
<thead>
<tr>
<th>Route</th>
<th>Day PVR</th>
<th>Night PVR</th>
<th>Route Length</th>
<th>No. passengers (Usage year 2015/16)</th>
<th>Bus Km Operated year 2015/16</th>
<th>Garage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mon-Fri</td>
<td>Sat</td>
<td>Sun</td>
<td>Mon-Fri</td>
<td>Sat-Sun</td>
<td>miles</td>
</tr>
<tr>
<td>74 / N74</td>
<td>21</td>
<td>21</td>
<td>16</td>
<td>4</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

Frequencies (buses per hour)

<table>
<thead>
<tr>
<th>Am Peak</th>
<th>Monday-Friday</th>
<th>Saturday</th>
<th>Sunday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Am normal</td>
<td>Pm Peak</td>
<td>Pm normal</td>
<td>Early Am</td>
</tr>
<tr>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>6</td>
</tr>
</tbody>
</table>
Case study: Bus parameter

- 25 Buses
 - Putney garage
- 19 buses operate during the day
- 3 Day / Night
- 3 as night buses.

- Individual buses run between 45km and 202km/day (2 to 9 round trips.)
- Based on current technology electric buses would consume between 68 and 304 KWh/day
- As batteries age not able to cover the duty cycle from overnight
Case Study: Degraded battery

- 16% Degradation in capacity assumed
- 10 Buses can run several days on 1 depot based full charge.
- 13 min dwell time at far end of route
- 8 min charge via 300KW pantograph system.
- Adding in power requirements for heating increases the number of end of route charges.

<table>
<thead>
<tr>
<th>BUS No</th>
<th>% Battery Consumed (Only overnight charging)</th>
<th>% Battery Consumed if charged once at Baker Street</th>
<th>% Battery Consumed if charged twice at Baker Street</th>
</tr>
</thead>
<tbody>
<tr>
<td>159</td>
<td>75</td>
<td>60.6</td>
<td>45.7</td>
</tr>
<tr>
<td>160</td>
<td>75</td>
<td>60.6</td>
<td>45.7</td>
</tr>
<tr>
<td>151</td>
<td>82</td>
<td>66.8</td>
<td>52.0</td>
</tr>
<tr>
<td>153</td>
<td>88</td>
<td>73.1</td>
<td>58.2</td>
</tr>
<tr>
<td>158</td>
<td>88</td>
<td>73.1</td>
<td>58.2</td>
</tr>
<tr>
<td>163</td>
<td>88</td>
<td>73.1</td>
<td>58.2</td>
</tr>
<tr>
<td>164</td>
<td>88</td>
<td>73.1</td>
<td>58.2</td>
</tr>
<tr>
<td>166</td>
<td>88</td>
<td>73.1</td>
<td>58.2</td>
</tr>
<tr>
<td>168</td>
<td>88</td>
<td>73.1</td>
<td>58.2</td>
</tr>
<tr>
<td>171</td>
<td>94</td>
<td>79.4</td>
<td>64.5</td>
</tr>
<tr>
<td>157</td>
<td>94</td>
<td>79.4</td>
<td>64.5</td>
</tr>
<tr>
<td>165</td>
<td>94</td>
<td>79.4</td>
<td>64.5</td>
</tr>
<tr>
<td>169</td>
<td>94</td>
<td>79.4</td>
<td>64.5</td>
</tr>
<tr>
<td>155</td>
<td>107</td>
<td>92.0</td>
<td>77.1</td>
</tr>
<tr>
<td>162</td>
<td>113</td>
<td>98.3</td>
<td>83.4</td>
</tr>
</tbody>
</table>
Case Study: Environmental Impacts

- **CO₂ reductions**
 - 2.35 Tons/day
 - 844 Tons/year

- **Nox reductions**
 - 50.3 kg/day
 - 18 Tons/year

- **PM reductions**
 - 91.2 g/day
 - 32.8 kg/year

- **FC reductions**
 - 1761.3 L/day
 - 634079 L/year
Conclusions

• The LU AC grid can in some cases supply power for both TfL fleet vehicles and buses cost effectively.

• Geographic and electricity grid factors are site specific.

• Larger trial needed to fully validate this alternate use of the LU grid.

• Heating has a major impact on electrical power requirements.

• Combination of overnight charging and on route top ups needed in some circumstances.
Future rollout

- The London bus fleet
- TfL Estate
- London Boroughs of Hounslow and Haringey and the Cross River Partnership including the boroughs of Camden, Islington, Lambeth, Lewisham and Southwark
David Talbot
European Research Coordinator
City Planning, Transport for London
davidtalbot@tfl.gov.uk

tfl.gov.uk