

ELIPTIC Use Case Eberswalde

Extension of trolleybus operation Methodology and Results

Dr.-Ing. Thoralf Knote (Fraunhofer IVI) Frank Wruck (Barnimer Busgesellschaft mbH)

Introduction Eberswalde

- Approx. 39.000 inhabitants
- County Seat
- 1 out of 3 German trolleybus towns
- Elongated urban structure
- Eliptic Use Case on hybrid trolleybus operation

Introduction The existing trolleybus network

Introduction The diesel bus line 910

- Partly parallel to the trolleybus lines
- Length: approx. 14.7 km (depending on terminal stop in Finowfurt)
- Connects neighbouring Finowfurt with Eberswalde

The Use Case Extension of trolleybus operation

- By combining line 910 with the trolleybus catenary network
- Use of trolleybuses with energy storage instead of APU
- Minimum extension of the catenary network

Eberswalde Finowfurt catenery free sections (13.1 km) extension of existing catenaries (4.74 km) already existing catenaries (13.34 km)

- 12 buses in operation
- One bus already equipped with a battery
- Retrofitting of additional buses subject to feasibility study
- Recharging under catenary

- Length / total weight: 18 m / max. 28 t
- 2nd, asynchronous motor Driven axle: •
- Power (con. / max.): 250 / 300 kW ٠
- Torque (con. / max.):
- 1734 / 2600 Nm

- Battery: LiFePO4
- Energy content: 70.4 kWh (42.2 kWh usable)
- Weight: 1020 kg
- Power:

<u>38 kW</u> (charging) / 140 kW (discharging)

- Braking energy storage: Super capacitors
- Energy content: 0.57 kWh
- Average power:

150 kW (discharging)

Feasibility study Technical feasibility

- Vehicle simulation
- Based on measured speed-distance-patterns
- Using Fraunhofer IVI*sion* vehicle simulation model

Feasibility study Core questions

- Is the battery big enough to cover the catenary free section to / from Finowfurt?
- Is there enough time under the catenaries to recharge the battery?

Feasibility study Secondary questions

- How long must the additional catenary be?
- Is a charging station at the terminal stop in Finowfurt necessary?

Feasibility study Approach

- Field measurements:
 - > speed-distance-patterns / speed-time-patterns
 - passenger demand
- Configured vehicle model and catenary network using IVIsion
- Vehicle simulations using schedules provided by BBG

Catenary 4 Layouts

Extension to the west	Extension to the east
Kleiner Stern	-
Großer Stern	-
Großer Stern	Tramper Chaussee
Großer Stern	Bernauer Heerstrasse
	Kleiner Stern Großer Stern Großer Stern

- max. electric power taken from catenary at 600 V
 - while driving: 400 A ; 240 kW (could be higher)
 - during stops: 150 A; 90 kW

Vehicle Parameters HVAC

Solltemperatur laut VDV 236/1

Version	Component	Installed power	heating / AC	45 40 35			
К 1	Heat pump	-	2x 30 kW 2x 24 kW	30 and 25			
	Electric heater	Heating	38 kW	- 20 - 15 - 10			
K 2	Diesel heater	Heating	50 kW	= 10			
	24 V-AC unit	AC	3 x 5 kW	-30	-10	10	30
					Außent	emperatur [°C]	

• Objective: Fully electric operation!

Ambient Conditions 3 Scenarios

Ambient Conditions	Temperature	Solar Irradiation
Scenario S1	-24°C to -17°C	overcast
Scenario S2	15°C to 17°C	overcast
Scenario S3	23°C to 36°C	sunny

- "worst case" Scenarios (S1 and S3)
 - > safe operation in the winter time
 - determination of the highest energy demand

Boundary Conditions Vehicles and passengers

- Vehicles
 - 3 schedules
 - L910_11: starts 4:17 Uhr; 19.5 h; 350 km
 - L910_12: starts 5:47 Uhr; 14 h; 260 km
 - L910_53: starts 5:17 Uhr; 19.5 h; 350 km
- Number of passengers: 2 scenarios
 - constant 25 / 75 passengers
 - per passenger: 50 100 W heat emission
 - heat losses influenced by the duration of opened doors
 - journeys to and from bus depot without passengers

Results Energy consumption

Results State of Charge

• Electric heating – mild wheather conditions (S2)

Results State of Charge

• Electric heating – cold wheather conditions (S1)

Conclusions Answers to the questions

- Is the battery big enough to cover the catenary free section to / from Finowfurt?
 Yes!
- Is there enough time under the catenaries to recharge the battery? No! Charging power (38 kW) too low!
- How long must the additional catenary be? Longer than possible!
- Is a charging station at the terminal stop in Finowfurt necessary?
 It would help, but very high investment cost.

Conclusions Solution

- Battery with higher charging power
- Elimination of the supercapacitor storage
- Use of the SC-converter to recharge the battery
- Battery charging power and usable energy content to be determined in additional analysis.

ELIPTIC Use Case Eberswalde Extension of trolleybus operation

Dr.-Ing. Thoralf Knote Zeunerstr. 38, 01069 Dresden Germany

thoralf.knote@ivi.fraunhofer.de www.ivi.fraunhofer.de Frank Wruck Poratzstraße 68, 16225 Eberswalde Germany

wruck@bbg-eberswalde.de www.bbg-eberswalde.de

Horizon 2020 Programme

This project has received funding from the European Union's Horizon 2020 research an innovation programme under grant agreement No 636012