Optimised Braking Energy Recovery in Metro and Light Rail Systems

Ricardo Barrero Project Architect STIB - MIVB

brussels 🖓

European Commission Horizon 2020 European Union funding for Research & Innovation

Overview

- Technologies description
- Methodology
- Ticket to Kyoto experience
 - Reversible substations in the Metro network
- Eliptic Approach
 - Tram Network
- Summary & conslusions

Technologies description

Urban Rail Vehicles: Regenerative Braking & Energy Exchange

Onboard Energy Storage

Wayside Energy Storage

Click header and footer to change this on all slides 6

Reversible Substation

Click header and footer to change this on all slides 7

Summary of Technologies

	MOBILE STORAGE SYSTEMS	STATIONARY STORAGE SYSTEMS	REVERSIBLE SUBSTATIONS
Overhead line or third rail losses are reduced.	×	×	
High efficiency due to lower transformation and storage losses.			×
Recovered braking energy can supply any equipment (lighting, escalators, etc.).			×
Vehicles can be operated without overhead lines/ third rail on short sections.	×		
The systems can be installed without having to modify the vehicles.		×	×
Lower safety constraints as not on-board of the vehicle.		×	×
Tunnels and stations warming can be avoided by reducing the heat produced by the braking resistors.	×	×	×
Voltage stabilisation and peak-shaving opportunities.	×	×	

.brussels

Methodology

Matongé

Evaluation of Potential

Measurements

- Vehicles power flows and energy consumption
 - Braking resistors energy = Maximum energy savings potential
 - Auxiliaries
 - Traction
 - Energy sent back to the network
- Substations
 - Energy consumption and power profile
 - OCV and internal impedance

Evaluation of Potential (II)

Simulations

- Modelling the network and vehicles "as it is"
- Validation of the model with measurements
- Introduction of energy recovery technologies
 → Find the suitable technology and possible solutions

Business Case

Simulations : Network Model

Simulations: Validation

brussels 🔊

Simulations: Validation (II)

Simulation Results

Simulation Results (II):

Trade-off solution: 6-8 Inverters of 1 to 1.5 MW

Ticket To Kyoto Experience

From evaluation to installation

matongé

Tender Process

Tender answered by 8 companies

AEG TranzCom **Ingeteam SIEMENS**

- Each company proposed a solution and estimated the yearly savings
 - Proposals evaluated & challenged by external expert
- After a few corrections, the final proposals from the 3 companies were similar

 \rightarrow STIB decided to test 3 prototypes in the same conditions

How does a 1,5 MW inverter look?

.brussels 🔊

Trial Phase

brussels 🔊

- Estimated Payback Time: 5 years ^(*)
- Differences in Power Factor
- Trial results in line with estimations

Results 2014

3 prototypes in the same substation until May

A STIR

Installation and relocation of inverters

ELIPTIC Webinar: Optimised braking energy recovery in electric public transport systems

Eliptic

Energy Recovery in the Tram Network

Eliptic Approach

- Study of Tram Network
 - Similar approach to the Metro study
 - Higher complexity
 - Interconnected lines
 - Substation feeding different lines
 - Electric feeders and catenary differ in sections
 - Most of the lines are mixed with car traffic
- Use of feedback from real systems installed in the metro lines

Tram Network

Reversible Substations Concept

Tram 1 braking

Tram 2 accelerating

Quick Comparative: Tram vs. Metro

	Metro	Tram
Vehicles' Power	> 2 MW	< 600 kW
Vehicles' Speed	Higher (up to 70 km/h)	Lower (dependant on traffic)
Electric Network	Regular feeders and third rail	Irregular feeders and caternary sections
Auxiliaries' consumption	Low	High (expected)
Stations Nearby	Always	Rarely
Supply Voltage	900 Vdc	700 Vdc
Electric consumers near the substation	Always (station): escalators, lighting, shops	Rarely

Tram vs. Metro: Voltage drop par km

This parameter influences "How far the braking energy can be sent"

Despite the differences \rightarrow similar behaviour

ELIPTIC Webinar: Optimised braking energy recovery in electric public transport systems 28

Eliptic Timeline

Summary

Stil

Matongé

Summary & Conclusions

- Overview of methodology and Ticket to Kyoto experience
- Lessons learned:
 - Control expertise is crucial
 - The same hardware can have very different results
 - Importance to challenge the supplier proposal by independent consultant
 - Each network is different → Hard to extrapolate results
- Eliptic:
 - Similar methodology will be used
 - Feedback from Ticket to Kyoto will be used