

STARTING SOON!!! 1st ELIPTIC webinar:

Optimised braking energy recovery in electric public transport systems

29 April 2016, 10.00 to 11.30 AM CEST

Who is present

Moderator:

Wolfgang Backhaus, Rupprecht Consult GmbH Project Manager of the Horizon 2020 ELIPTIC project

Presenter:

Daniela Carbone & Veronica Usai, ASSTRA Introduction Pillar B - objectives and use cases

Ricardo Barrero, STIB Brussels Optimised braking energy recovery in metro & light rail systems

Mikolaj Bartlomiejczyk, PKT Gdynia Optimised braking energy recovery in trolleybus systems

Agenda

10:00 - 10:15	Welcome message and brief introduction to ELIPTIC, Wolfgang Backhaus, Rupprecht Consult		
10:15 - 10:30	Introduction Pillar B "Innovative energy storage systems to increase operational efficiency" - objectives and use cases, Daniela Carbone and Veronica Usai, ASSTRA- Associazione Trasporti		
10:30 - 10:50	Optimised braking energy recovery in metro and light rail systems - Ricardo Barrero, STIB Brussels		
10:50 - 11:00	Question and answer - round I		
11:00 - 11:20	Optimised braking energy recovery in trolleybus systems - Mikolaj Bartlomiejczyk, PKT Gdynia		
11:20 - 11:30	Question and answer - round II		
11:30	End of webinar		

ELIPTIC in a nutshell

- Research and Demonstration project in EU Program "Horizon 2020" (Mobility for Growth 5.1)
- Funding primarily for research and promotion (only small share for hardware)
- 33 partner in 8 Countries
- Duration: 01.06.2015 30.05.2018
- Coordinator: Freie Hansestadt Bremen
- Budget: 5,9 Million Euro (100% funding)

ELIPTIC – project objectives

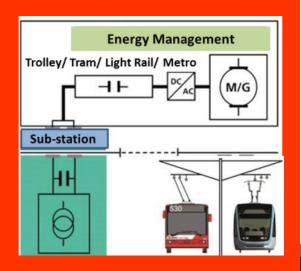
Safe integration of electric vehicles into existing electric PT infrastructure:

- (re)charging ebuses "en route" (e.g. trolleybus operated on tram infrastructure) or on the spot (battery buses/ hybrids charged from trolleybus, tram, metro network);
- upgrading trolleybus networks with battery buses or trolley hybrids (diesel bus substitution);
- upgrading and/or regenerating electric public transport systems (flywheel, reversible substations)

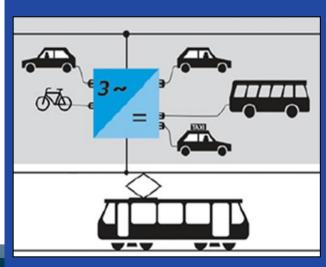
Multi-purpose use of electric public transport infrastructure:

- safe (re)charging of non-public transport vehicles (pedelecs, electric cars/ taxis, utility trucks);
- analyse the potential of existing electric public transport infrastructure to become a backbone for smart electromobility

Three research and innovation pillars



E-buses

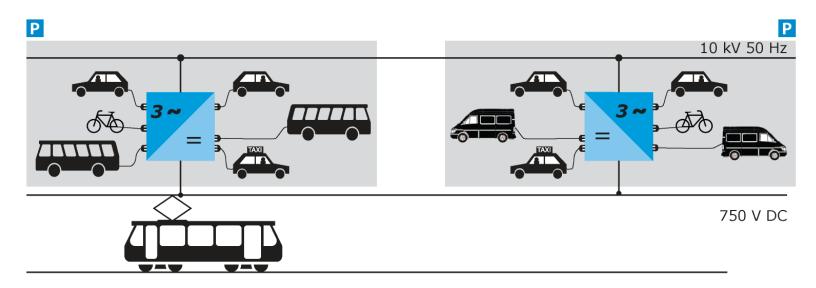

Safe integration into existing electric PT infrastructure

Energy efficient electric PT system

Multi-purpose use of electric PT infrastructure

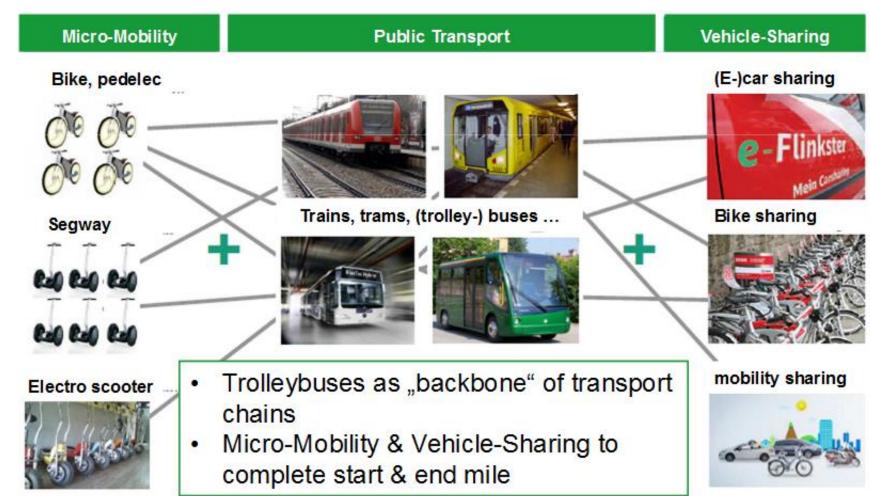
The ELIPTIC use cases

Lanciano (IT)


		C:V:T	electrification of public transport in cities	
Table 2: ELIPTIC use cases: = feasibility study / technological concept / = demonstration in operational environment				
Thematic pillar Partner city	Safe integration of ebuses using existing electric public transport infrastructure	Innovative energy storage systems to increase operational efficiency	(C) Multi – purpose use of electric public transport infrastructure	
Bremen (DE)	A.1: Operation-optimized system of opportunity charging at bus depots	B.1: Recuperation of braking energy from trams: Refurbishment of a flywheel energy storage system	C.1: From uniqueness to system: Extension of existing multimodal mobility hub station	
London (UK)	A.2: Opportunity (re)charging of ebuses and/or plug-in hybrid buses (using metro infrastructure)		C.2: Use of metro sub-station for (re)charging TfL fleet vehicles (e-cars & e-vans) and zero-emission capable taxis	
Brussels (BE)	A.3: Progressive electrification of hybrid bus network, using existing tram and metro infrastructure	B.2: Optimised braking energy recovery in light rail network		
Barcelona (ES)	A.4: Opportunity fast (re)charging and slow overnight charging of electric buses based on metro infrastructure		C.3: Use of metro/tram infrastructure for recharging e-cars (municipal fleet and private e-cars)	
Warsaw (PL)	A.5: Use of /tram infrastructure for recharging e-buses			
Leipzig (DE)	A.6: Opportunity (re)charging of ebuses (using tram infrastructure)		C.4: Use of tram network sub-station for (re)charging e-vehicles	
Oberhausen (DE)	A.7: Opportunity (re)charging of ebuses (tram catenaries and sub-stations)		C.5: Fast-charging stations for e-cars powered from the tram network	
Gdynia (PL)	A.9: Opportunity (re)charging of ebuses connecting Tri-city agglomeration based on trolleybus infrastructure			
	A.10: Replacing of diesel bus lines by extending trolleybus network with trolley-hybrids			
Eberswalde (DE)	A.11: Replacing diesel bus lines by extending trolleybus network with trolley-hybrids (incl. demo of automatic (de)wiring)			
Szeged (HU)	A.12: Replacing diesel bus lines by extending trolleybus network with trolley-hybrids		C.7: Multipurpose use of infrastructure for (re)charging trolley-hybrids & e-vehicles	

B.4: Light rail (tram) operation for rural rail track

The concept/idea

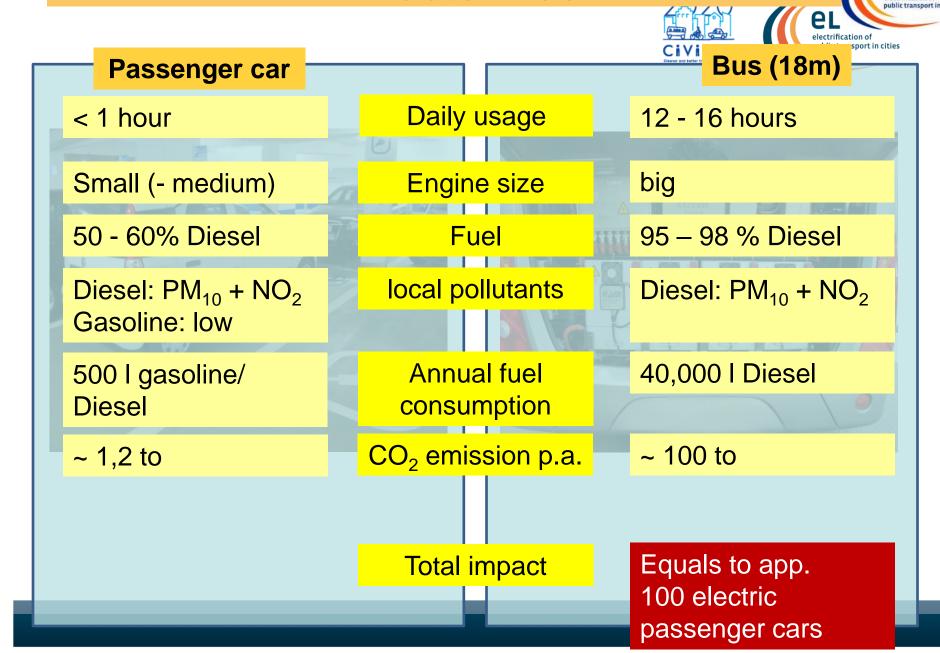


Source: Müller-Hellmann

Potential of using existing public transport infrastructure

Source: Spath, IAO, 2011

Thematic pillar C: Multi-purpose use of electric public transport infrastructure



Use case London (TfL)

- A feasibility study will investigate the potential for using the London Underground (LU) power network for charging electric cars & commercial vehicles, such as TfL's own vehicles kept at common locations
- This study will complement the Mayor's proposals for newly-licensed taxis from 2018 to be zero-emissions capable. TfL is investigating how a charging network could support this and where possible network locations with sufficient capacity could exist

Factor 100

Thank you for your attention!

http://www.eliptic-project.eu/

Contact:

Wolfgang Backhaus
Rupprecht Consult GmbH
w.backhaus@rupprecht-consult.eu
+49 221 60 60 55 19

