

Electrified Buses in Brussels: Design Considerations and Charging Strategy

Omar Hegazy & Thierry Coosemans VUB-MOBI

BACKGROUND

 Electrification of Diesel Buses: WHY?

- To improve Air Quality by reducing emissions
- To reduce the noise of buses in cities
- To get more energy efficient technology

Standard Bus:12m

Articulated Bus:18m

Use-Case Definition & Specifications

Modeling Method & Bus Architecture

Charging Scenarios & Battery Sizing

Summary

Use-Case Definition & Specifications

Modeling Method & Bus Architecture

Charging Scenarios & Battery Sizing

Electric Bus: Design Considerations

- Road Characteristics
- Battery Chemistry
- Battery Aging
- Charging scenarios: Overnight or Opportunity
- Charging power
- Charging time
- Auxiliaries loads; incl. Air condition, etc.
- Bus schedule
- Bus autonomy and capacity

Bus Lines and Use-case Definition

Bus Line 17: Neighborhood bus → 12m standard Bus

Overnight Charging

12hr Autonomy

Bus Lines and Use-case Definition

Use-Case Definition & Specifications

Modeling Method & Bus Architectures

Charging Scenarios & Battery Sizing

Summary

Use-Case Definition & Specifications

Modeling Method & Bus Architecture

Charging Scenarios & Battery Sizing

E-Bus: Modeling Methodology

E-Bus: Architectures

(1) High Voltage Battery

High Voltage Battery → 600-750V

EVSE: Electric Vehicle Supply Equipment

E-Bus: Architectures

(2) Low Voltage Battery+ DC/DC Converter

Use-case Specifications

	Bus Line	Length (m)	EMPTY (kg)	Full Load (kg)
STIB/MVIB nput	L 86	12.135	11.720	19000
	L 48	18.125	17.205	27065
	L 17	12.135	11.720	19000

Different Battery Technologies for Electric Bus Lines

	Battery Type	Capacity (Ah)	Wh/kg	W/kg	Weight (kg)
VUB	LTO	60	156	2700	1.45
Input	LFP	45	146	2500	0.99
	NMC	20	174	2300	0.428

All battery models are validated via real measurements (MOBI database) incl. battery aging \rightarrow @ different temperatures & current rates

Use-Case Definition & Specifications

Modeling Method & Bus Architecture

Charging Scenarios & Battery Sizing

Charging Scenarios & Battery Sizing → Bus Line 86

→ Measurements of L86 → Diesel Bus

- Driving Cycle → back-forth
- Diesel Fuel Consumption \rightarrow 8.02 Liter \rightarrow 59l/100km
- Back-Forth trips \rightarrow Average distance 13.6km

Charging Scenarios & Battery Sizing → Electrified Bus Line 86

CIVITAS

- Back-Forth Driving Cycle
- Wheel Power (kW) & Battery power (kW)
- Auxiliaries power \rightarrow 3kW (Assumption)
- LFP battery (45 Ah)/700V

\rightarrow LFP battery \rightarrow 45Ah /700V

- Ebus Operation =12 hours
- Min. SoC ~ 10%
- Total Battery Energy= <u>175.25 kWh</u>
- Estimated Distance ~ <u>103 km</u>

High Voltage LFP Battery Pack: Energy (kWh)

Overnight Charging: L86 Battery Sizing

- ightarrow Selection of Battery Energy
- ightarrow 12hr Bus Operation
- \rightarrow Charging power \rightarrow 40kW <u>@ Depot</u>
- \rightarrow Charging time \rightarrow 4.25 hr (for LFP)

Impact of Auxiliaries Energy Consumption \rightarrow 12hr Bus Operation

Incl. 96% Efficiency for 48V DC/DC for Aux. loads

Charging Scenarios & Battery Sizing → Electrified Bus Line 48

- Back-Forth Driving Cycle (50.5 kWh) & 17km → 2.97 kWh/km
- Wheel Power (kW) & Battery power (kW)
- Auxiliaries power \rightarrow 3kW (assumption)
- LTO battery (60 Ah)/600V

Opportunity Charging: L48 Battery Sizing

→ L48- LTO (60Ah/600V)

- \rightarrow Energy: 28 kWh \rightarrow Charging at both terminals
- \rightarrow Charging power \rightarrow 200kW \rightarrow 7min

→ Electrified Bus Line 48

\rightarrow Impact of Aux. Load consumption

Charging Scenarios & Battery Sizing → Electrified Bus Line 17

- → Back-Forth Driving Cycle
- \rightarrow Wheel Power (kW)
- → Battery Power (kW)
- \rightarrow Auxiliaries power (average) \rightarrow 3kW (assumption)
- → NMC (20Ah)/700V

Overnight Charging: L17 Battery Sizing

CIVITAS

- → Total energy = 265 kWh & travelling distance 211 km
- \rightarrow 12hr Bus Operation
- \rightarrow Overnight Charging \rightarrow 60kW
- \rightarrow Charging time \rightarrow 4.5hr
- \rightarrow Travelling distance (Back-forth)= 13.93 km \rightarrow ~1.3 kWh/km

Use-Case Definition & Specifications

Modeling Method & Bus Architecture

Charging Scenarios & Battery Sizing

Summary

Bus Line	Energy @12hr	Charging Scenario	Charging time
L 86	185 kWh (LFP)	OverNCharg: 40kW	4.25hr
L 48	28kWh (LTO)	OPPCharg.: 200 kW	7min
L 17	265 kWh	OverNCharg:60 kW	4.5 hr

- → NMC battery is not recommended for Opportunity charging due its limited charging rate
- → Auxiliaries loads have a significant impact on Bus energy consumption.

Well-to-Wheel (WTW): Evaluation

→ Energy Consumption → Ebus is based on <u>NMC 20Ah</u>

 \rightarrow Average kg CO_{2eq}/kWh for Ebus

Energy Consumption

	TTW	WTT
Diesel	2151.55	582.98
Elec (BE mix)	629.10	1207.87

Aver. kg CO_{2eq} /kWh = 0.184 kg CO_{2eq} /kWh		
Overnight Charging (E)	<u>Aver. kg CO_{2eq}</u>	
180 kWh	33.12/One-time Charging	

TTW= Tank-to-Wheel

WTT= Well-to-Tank

Contacts

Omar Hegazy

Omar.hegazy@vub.ac.be +3226292992

Thierry Cooesmans

Thierry.Coosemans@vub.ac.be +3226293767

Horizon 2020 Programme

This project has received funding from the European Union's Horizon 2020 research an innovation programme under grant agreement No 636012