

SYMPOSIUM: July 19-21, 2016 | ANCILLARY MEETINGS: July 18 & 22, 2016 | Hilton San Francisco Union Square

USERS. VEHICLES. INFRASTRUCTURE.

Breakout Session #12, July 19, 2016 "AV-Ready" Cities or "City-Ready AVs?"

How can cities plan for the transition period?

Siegfried Rupprecht, Rupprecht Consult, Cologne/ Germany

What is important about the urban "transition period"?

- Coexistence of conventional and automated vehicles
- Generally, varying levels of "AV readiness" in the entire transport system (users, infrastructure, service providers, etc)
- Transition challenges are particularly high in urban contexts
- Critical phase of a large transformative process with a major impact on our cities (beyond mobility)
- Managing urban transition well, will be a key success factor for effective AV deployment overall
- <u>Not</u> managing urban transition <u>actively</u>, can create **safety** issues, reduce public policy impact, will add further uncertainties to AV impact

Urban Transition Scenario (technology) [source: CityMobil2 Project, 2015]

Level 5 Full automation					Self-driving trucks and cars Cybercars ("taxi" & delivery vans in mixed traffic)
Level 4 High automation		Cybercars/ delivery vehicles (last mile, low speed) Automated bus/ PRT (segregated lane)	Cybercars/ delivery vehicles (last mile use) Automated bus/ PRT (dedicated lane)	Automated bus/ PRT (in mixed traffic) Parking Garage Pilot Truck Terminal Parking	50%
Level 3 Conditional automation			Traffic Jam Chauffeur Truck platooning		of fleet is level 3 or
Level 2 Partial automation		Partial Automated Parking Traffic Jam Assistance		50% of fleet is level 2 or	higher?
Level 1 Active assistance	Adaptive Cruise Control ACC + Stop & Go Lane Keeping Assist Basic Park Assist Lane Departure Warning		50% of fleet is level 1 or higher?	higher? assuming <u>continue</u> 20 year fleet renew	100% of fleet is <u>ous</u> level 1 or wal higher?
	2015		2025		2035

Technology growth rates

Growth rates can be very different!

What determines the speed of transition?

- General socio-economic factors
- Definition of successful use and business cases and public image of automation
- Legal framework (national, multi-/international)
- Integration impact (IT, electrification, service models e.g. intermodality)
- Transition dynamics [Beiker, 2015]
 - evolutionary (~automobile industry) → "something everywhere"
 - revolutionary (~IT industry) → "everything somewhere"
 - transformative (~start-ups, local automated mobility on-demand services)
 - → "disruptive innovation process"? (Christensen)

Visions and mobility policies of local stakeholders

Policy context of road automation (local government perspective)

What will you do tomorrow about automation in your city?

- Transport planning
- Infrastructure development
- Governance structures/ service models
- Policy development
- ... while dealing with many uncertainties

 (user response, prevailing technologies and business models, timescales)

How can cities prepare (better) for the transition period?

Transport planning – *plan with automation in mind!*

- What are we planning for? (how to overcome uncertainties?)
 - what is the vehicle share of "autonomous", "automated and connected" personal cars,
 - and shared vehicles (single occupancy or ride sharing)?
 - what will be the success of "disruptive" fully automated services in (specific areas)
 - what is the time horizon for mainstream AV market take-up? how does it match our planning horizons?
 - how much is "freight planning" an issue?

How can cities prepare (better) for the transition period?

Transport planning (2) – *plan with automation in mind!*

- Transport mode perspective
 - planning impact of **automation corridors**
 - drawback of AV's high efficiency road space use for non-automated modes
 - interaction with human road users (e.g. with non-motorised users/ in complex traffic situations)
 - \rightarrow traffic efficiency impact?
 - automation rate of public transport, AV impact on transit demand, intermodal connectivity
- Modelling is not yet "AV ready"
 - **vehicle** behaviour (micro simulation)
 - demand models need to reconsider value of time, car ownership
 - AV network impact: at which automation rate/ in which traffic context?

How can cities prepare (better) for the transition period?

Infrastructure development – "AV-enabling" infrastructure that we build now!

- High automation pilot areas: test grounds to understand
 - what are infrastructure needs of **connected vehicles** (IT, financing, standards)?
 - what is user response? when and in which context is there a relevant traffic impact
- Automation corridors
 - how can "segregated"/ "dedicated" lanes for AVs work in practice?
 - how can **walking/ cycling** travellers survive in AV-built corridors?
 - what are **low-cost** AV-infrastructure options?

How can cities prepare (better) for the transition period?

Infrastructure development (2) – "AV-enabling" infrastructure that we build now!

- Infrastructure for public transport (transit) and new AV-based services
 - the end of the "**bus stop**"?
 - design of (local) interchange hubs (AV ←→ transit) scope for new business models?
 - converting parking to "vehicle storage"
- Freight distribution infrastructure (e.g. converting parking houses to logistics centres?)
- How to redistribute space and to reassign urban functions?

How can cities prepare (better) for the transition period?

New service models and **governance structures** – agree an automation agenda!

- "Mobility on Demand" or "vehicle on demand"?
 - vehicle and ride sharing services that support **policy goals**
 - use cases and **cooperation models** for last mile/ low density services, special needs services (e.g. for ageing communities), municipal services, e.g. waste collection
 - new and traditional providers in a "services platform"
- Changing role of large transit operators: innovative mobility providers
 - integrator, system backbone, AMoD provider, hub operator
- Freight distribution: a growing threat (and an opportunity)
- Automation platform" (or initially a "task force") to facilitate multi-stakeholder cooperation

How can cities prepare (better) for the transition period?

- **Policy development** actively develop an "automation vision"!
 - mobility **innovation culture** getting ready for "disruptive innovation"
 - land use policy and building standards
 - major new **trends** (e.g. impact of 3D printing)
 - demand management policies
 - services based on **shared use**

Discussion: The next five years of urban "automation policy" development

My City's Automation Roadmap, including

- Transport planning
- Infrastructure development
- Governance structures/ service models

