

Eco-training for Van Hool's AG300ExQuiCity

Dr Ir Flip Bamelis, Van Hool nv

Van Hool's AG300G ExQuiCity

AG300 Trl Ex.Qui City			
18.610m			
34			
1x Articulated			
3			
Trolley (750V)			
Supercaps			
Diesel generator			

Electrical energy flow in 'trolley mode'

Drivers training for 'Eco-driving'

Aim of eco-driving:

Reuse brake energy as much as possible to power the next acceleration or on board auxiliaries.

In these buses, regenerated power is used for:

-to power auxiliaries (pneumatics, servo steering, 24V network, heating)

- -stored temporarily in supercaps on board
- -sent to power another accelerating trolleybus on the same segment (if present)
- -burnt in brake resistors on board (heat is recuperated in heating system)

Main aim

How to teach a driver that he/she maximally regenerates power into electrical power? Technically this means:

-use the retarder for decelleration

-only use the brake pedal 'smoothly'

-avoid high accelleration level

Where are the 'regeneration limits' and what should be stressed in training?

Tool for driver's evaluation

Tool for driver's evaluation

actuate

Eco-drivers training

Blank

Coached

Training session organisation				
9:00-12:00	Drivers 'Blank drive'	8	2x 'Linea 5'	
12:00-13:00	Theoretic training	8	TEP room	
13:00-14:00	Lunch		20 A	
14:00-17:00	Drivers 'Coached drive'	8	2x 'Linea 5'	
	In total 20 drivers were t	rained.	0	

trainer using the 'Salzburg manual'

Tep's Linea 5

Driver – vehicle interaction

Driver – vehicle interaction: average figures

Travel time

actuate

Total travel time increases

although a lower speed

defensive driving style,

characterised by an

could be maintained. This

was realised with an more

increased 'drive time' and

more rolling of the vehicle.

with less than 20s,

Roll out time [%]		
Blind	14.30	
Coached	23.57	

11

Energy consumption by driver

12

actuate

Effect of retarder use on energy consumption

Remarks from drivers and main conclusion

ACTUATE – Remarks from drivers

Eco driving requires much more concentration

Only possible with calm traffic

Use of retarder is not 'ergonomic'

Drivers of next days were 'informed' by former

ACTUATE – Main conclusion

73% of the drivers perform more eco-friendly when coached. These drivers realise an energy reduction of 0.26kWh/km; This is realised by using the retarder more often.

